30 research outputs found
A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes
Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic / chain T-cell antigen receptor1–9. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes10,11. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor12,13. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence14, whereas the other considers peptide conformation and predicts antigenicity for amphipathic -helices15,16. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone
Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules
THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells
Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection
Interstitial pneumonia linked with reactivation of latent human cytomegalovirus due to iatrogenic immunosuppression can be a serious complication of bone marrow transplantation therapy of aplastic anaemia and acute leukaemia1. Cellular immunity plays a critical role in the immune surveillance of inapparent cytomegalovirus infections in man and the mouse1−7. The molecular basis of latency, however, and the interaction between latently or recurrently infected cells and the immune system of the host are poorfy understood. We have detected a so far unknown antigen in the mouse model. This antigen is found in infected cells in association with the expression of the herpesvirus 'immediate early' genes and is recognized by cytolytic T lymphocytes (CTL)8. We now demonstrate that an unexpectedly high proportion of the CTL precursors generated in vivo during acute murine cytomegalovirus infection are specific for cells that selectively synthesize immediate early proteins, indicating an immunodominant role of viral non-structural proteins
Memory inflation: continuous accumulation of antiviral CD8+ T cells over time.
CD8+ T lymphocytes play an important role in the control of intracellular pathogens during both acute and persistent infections. This is particularly true in the case of persistent herpesviruses such as human CMV, which are typified by large virus-specific CD8+ T cell populations during viral latency. To understand the origin of these populations and the factors shaping them over time, we investigated the CD8+ T cell response after murine CMV (MCMV) infection. The kinetics of the acute response were characterized by rapid expansion of activated T cells, followed by a contraction phase. Thereafter, we observed a striking pattern, where MCMV-specific memory CD8+ T cells steadily accumulated over time, with 20% of all CD8+ T cells at 1 year specific for one MCMV epitope. Accumulation of MCMV-specific CD8+ T lymphocytes was seen in all organs tested and was associated with continuous activation of specific CD8+ T lymphocytes, primarily within lymph nodes. The pattern of accumulation was observed in only two of five epitopes tested, and was accompanied by a gradual restriction in usage of the variable region of the TCR beta-chain over time. This novel pattern of a virus-specific CD8+ T cell response suggests that continuous or repetitive exposure to Ag can slowly mold memory T cell populations over time. This may be relevant for understanding the evolution of the large human CMV-specific CD8+ T cell populations seen in humans
Memory inflation: continuous accumulation of antiviral CD8+ T cells over time.
CD8+ T lymphocytes play an important role in the control of intracellular pathogens during both acute and persistent infections. This is particularly true in the case of persistent herpesviruses such as human CMV, which are typified by large virus-specific CD8+ T cell populations during viral latency. To understand the origin of these populations and the factors shaping them over time, we investigated the CD8+ T cell response after murine CMV (MCMV) infection. The kinetics of the acute response were characterized by rapid expansion of activated T cells, followed by a contraction phase. Thereafter, we observed a striking pattern, where MCMV-specific memory CD8+ T cells steadily accumulated over time, with 20% of all CD8+ T cells at 1 year specific for one MCMV epitope. Accumulation of MCMV-specific CD8+ T lymphocytes was seen in all organs tested and was associated with continuous activation of specific CD8+ T lymphocytes, primarily within lymph nodes. The pattern of accumulation was observed in only two of five epitopes tested, and was accompanied by a gradual restriction in usage of the variable region of the TCR beta-chain over time. This novel pattern of a virus-specific CD8+ T cell response suggests that continuous or repetitive exposure to Ag can slowly mold memory T cell populations over time. This may be relevant for understanding the evolution of the large human CMV-specific CD8+ T cell populations seen in humans
Memory inflation: Continous accumulation of antiviral CD8(+) T cells over time. (vol 170, pg 2022, 2003)
Erratum: Memory inflation: Continous accumulation of antiviral CD8 + T cells over time (Journal of Immunology (2003) 170 (2022-2029))
Development of bovine herpesvirus 4 as an expression vector using bacterial artificial chromosome cloning
Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses.
CD8(+) T cells are critical for the control of many persistent viral infections, such as human immunodeficiency virus, hepatitis C virus, Epstein-Barr virus, and cytomegalovirus (CMV). In most infections, large CD8(+)-T-cell populations are induced early but then contract and are maintained thereafter at lower levels. In contrast, CD8(+) T cells specific for murine CMV (MCMV) have been shown to gradually accumulate after resolution of primary infection. This unique behavior is restricted to certain epitopes, including an immunodominant epitope derived from the immediate-early 1 (IE1) gene product. To explore the mechanism behind this further, we measured CD8(+)-T-cell-mediated immunity induced by recombinant MCMV-expressing epitopes derived from influenza A virus or lymphocytic choriomeningitis virus placed under the control of an IE promoter. We observed that virus-specific CD8(+)-T-cell populations were induced and that these expanded gradually over time. Importantly, these CD8(+) T cells provided long-term protection against challenge without boosting. These results demonstrate a unique pattern of accumulating T cells, which provide long-lasting immune protection, that is independent of the initial immunodominance of the epitope and indicates the potential of T-cell-inducing vaccines based on persistent vectors
