13 research outputs found

    Current status of haploidentical stem cell transplantation for leukemia

    Get PDF
    Haploidentical hematopoietic stem cell transplantation has made tremendous progress over the past 20 years and has become a feasible option for leukemia patients without a HLA identical sibling donor. The early complications of severe graft-versus-host disease (GVHD), graft failure and delayed engraftment, as well as disease recurrence have limited the use of this approach. Newer strategies have been applied and overcome some of the problems, including the use of T-cell depleted graft, "mega" dose of stem cells, intensive post-transplant immunosuppression and manipulation of the graft. These have decreased the transplant related mortality and GVHD associated with haploidentical transplantation, however, the major problems of disease relapse and infection, which related to late immune reconstitution, limit the development of haploidentical HSCT. Future challenges remain in improving post-transplant immune reconstitution and finding the best approach to reduce the incidence and severity of GVHD, while preserving graft-versus-leukemia effect to prevent the recurrence of underlying malignancy

    Original Articles Alloreactive and leukemia-reactive T cells are preferentially derived from naïve precursors in healthy donors: implications for immunotherapy with memory T cells

    No full text
    The online version of this article has a Supplementary Appendix. Background HLA mismatch antigens are major targets of alloreactive T cells in HLA-incompatible stem-cell transplantation, which can trigger severe graft-versus-host disease and reduce survival in transplant recipients. Our objective was to identify T-cell subsets with reduced in vitro reactivity to allogeneic HLA antigens. Design and Methods We sorted CD4 and CD8 T-cell subsets from peripheral blood by flow cytometry according to their expression of naive and memory markers CD45RA, CD45RO, CD62L, and CCR7. Subsets were defined by a single marker to facilitate future establishment of a clinical-grade procedure for reducing alloreactive T-cell precursors and graft-versus-host disease. T cells were stimulated in mixed lymphocyte reactions against HLA-deficient K562 cells transfected with single HLA-A/-B/-C/-DR/-DQ mismatch alleles. Alloreactivity was measured by interferon-γ spot production and cell proliferation. Results We observed that allogeneic HLA-reactivity was preferentially derived from subsets enriched for naïve T cells rather than memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD45RA (versus other markers) was used for sorting. The numbers of allogeneic HLA-reactive effector cells were in median 7.2-fold and 16.6-fold lower in CD45RA neg memory CD8 and CD4 T cells than in entire CD8 and CD4 T cells, respectively. In contrast, proliferation of memory T cells in response to allogeneic HLA was more variably reduced (CD8) or equivalent (CD4) when compared to that of naïve T cells. We also demonstrated in HLA-matched donor-patient pairs that leukemia-reactive CD8 cytotoxic T-lymphocytes were mainly derived from subsets enriched for naïve T cells compared to memory T cells. Conclusions Memory T-cell subsets of most healthy individuals showed decreased allogeneic HLA-reactivity, but lacked significant anti-leukemia responses in vitro. The clinical use of memory or naïve-depleted T cells might be beneficial for HLA-mismatched patients at high risk of graft-versushost disease and low risk of leukemia relapse. Preferred allografts are those which contain leukemia-reactive memory T cells. Alternatively, replenishment with leukemia-reactive T cells isolated from naïve subsets is desirable. Key words: alloreactivity, leukemia-reactive T cells, T-cell subsets, naïve T cells, immunotherapy. Citation: Distler E, Bloet
    corecore