19 research outputs found

    A SYNGAP1 Variant in ALS Causes Spine Loss

    Get PDF
    Fused in sarcoma (FUS) is a pathogenic RNA-binding protein in amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilizes Synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3′ untranslated region (UTR) and maintains spine maturation. To elucidate the pathologic roles of this mechanism in ALS patients, we identified the SYNGAP1 3′UTR variant rs149438267 in seven (four males and three females) out of 807 ALS patients at the FUS binding site from a multicenter cohort in Japan. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, increased isoform α1 levels, and decreased isoform γ levels, which caused dendritic spine loss. Moreover, the SYNGAP1 variant excessively recruited FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK), and antisense oligonucleotides (ASOs) blocking HNRNPK altered aberrant splicing and ameliorated dendritic spine loss. These data suggest that excessive recruitment of RNA-binding proteins, especially HNRNPK, as well as changes in SYNGAP1 isoforms, are crucial for spine formation in motor neurons

    集中開講による物作り授業の実践

    Get PDF
    We performed a intensive course in an elective subject by the workshop seminar of theproduction for the first time during summer vacation. We open a course in 3 themes every year so farfor four years and each theme piles up improvement every year. We let a student choose 1 themeamong a velocity of the wind vehicle, the large size paper glider and the stirling engine now. Thosethemes have personal production or group production, and there is a thing to design originally orproduction it according to a drawing again, and there is variety. Our students to choose surpass 60%of a class. They learn behaviorally and achieve enough result

    3′UTR Length-Dependent Control of SynGAP Isoform α2 mRNA by FUS and ELAV-like Proteins Promotes Dendritic Spine Maturation and Cognitive Function

    No full text
    FUS is an RNA-binding protein associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Previous reports have demonstrated intrinsic roles of FUS in synaptic function. However, the mechanism underlying FUS’s regulation of synaptic morphology has remained unclear. We found that reduced mature spines after FUS depletion were associated with the internalization of PSD-95 within the dendritic shaft. Mass spectrometry of PSD-95-interacting proteins identified SynGAP, whose expression decreased after FUS depletion. Moreover, FUS and the ELAV-like proteins ELAVL4 and ELAVL1 control SynGAP mRNA stability in a 3′UTR length-dependent manner, resulting in the stable expression of the alternatively spliced SynGAP isoform α2. Finally, abnormal spine maturation and FTLD-like behavioral deficits in FUS-knockout mice were ameliorated by SynGAP α2. Our findings establish an important link between FUS and ELAVL proteins for mRNA stability control and indicate that this mechanism is crucial for the maintenance of synaptic morphology and cognitive function
    corecore