16,500 research outputs found
Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles.
Injury to the skin, and the subsequent release of noncoding double-stranded RNA (dsRNA) from necrotic keratinocytes, has been identified as an endogenous activator of Toll-like receptor 3 (TLR3). As changes in keratinocyte growth and differentiation follow injury, we hypothesized that TLR3 might trigger some elements of the barrier repair program in keratinocytes. dsRNA was observed to induce TLR3-dependent increases in human keratinocyte mRNA abundance for ABCA12 (ATP-binding cassette, sub-family A, member 12), glucocerebrosidase, acid sphingomyelinase, and transglutaminase 1. Additionally, treatment with dsRNA resulted in increases in sphingomyelin and morphologic changes including increased epidermal lipid staining by Oil Red O and TLR3-dependent increases in lamellar bodies and keratohyalin granules. These observations show that dsRNA can stimulate some events in keratinocytes that are important for skin barrier repair and maintenance
Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails
Distributions of Faraday rotation measure (FRM) and the projected magnetic
field derived by a 3-dimensional simulation of MHD jets are investigated based
on our "sweeping magnetic twist model". FRM and Stokes parameters were
calculated to be compared with radio observations of large scale wiggled AGN
jets on kpc scales. We propose that the FRM distribution can be used to discuss
the 3-dimensional structure of magnetic field around jets and the validity of
existing theoretical models, together with the projected magnetic field derived
from Stokes parameters. In the previous paper, we investigated the basic
straight part of AGN jets by using the result of a 2-dimensional axisymmetric
simulation. The derived FRM distribution has a general tendency to have a
gradient across the jet axis, which is due to the toroidal component of the
magnetic field generated by the rotation of the accretion disk. In this paper,
we consider the wiggled structure of the AGN jets by using the result of a
3-dimensional simulation. Our numerical results show that the distributions of
FRM and the projected magnetic field have a clear correlation with the large
scale structure of the jet itself, namely, 3-dimensional helix. Distributions,
seeing the jet from a certain direction, show a good matching with those in a
part of 3C449 jet. This suggests that the jet has a helical structure and that
the magnetic field (especially the toroidal component) plays an important role
in the dynamics of the wiggle formation because it is due to a current-driven
helical kink instability in our model.Comment: Accepted for publication in Ap
Fear of Crime, Incivilities, and Collective Efficacy in Four Miami Neighborhoods
Purpose: Extant literature indicates that individual perceptions of collective efficacy and incivilities are important in explaining fear of crime. These studies, however, often implicitly assume that the relationships between key variables do not differ between neighborhoods. The purpose of this research is to examine the relationship between perceptions of collective efficacy, perceptions of incivilities, and fear of crime and determine whether these relationships are constant between neighborhoods.
Methods: Surveys were conducted using a sample of residents from four neighborhoods within Miami-Dade County. Structural equation models were used to examine the relationships between perceptions of collective efficacy, perceptions of incivilities, and fear of crime for each neighborhood separately. Tests for invariance were conducted to determine whether the coefficients from these models differed across neighborhoods.
Results: Results from these analyses suggest that the relationship between perceptions of collective efficacy and fear of crime exhibit significant heterogeneity between neighborhoods, as do a number of other relationships. The relationships between perceptions of collective efficacy and perceptions of incivilities, and perceptions of incivilities and fear of crime do not exhibit heterogeneity.
Conclusions: These results illustrate the importance of examining perceptions of collective efficacy within the neighborhood context. Implications for policy and future research are discusse
Nuclear Propelled Vessels and Neutrino Oscillation Experiments
We study the effect of naval nuclear reactors on the study of neutrino
oscillations. We find that the presence of naval reactors at unknown locations
and times may limit the accuracy of future very long baseline reactor-based
neutrino oscillation experiments. At the same time we argue that a nuclear
powered surface ship such as a large Russian ice-breaker may provide an ideal
source for precision experiments. While the relatively low reactor power would
in this case require a larger detector, the source could be conveniently
located at essentially any distance from a detector built at an underground
location near a shore in a region of the world far away from other nuclear
installations. The variable baseline would allow for a precise measurement of
backgrounds and greatly reduced systematics from reactor flux and detector
efficiency. In addition, once the oscillation measurement is completed, the
detector could perform geological neutrino and astrophysical measurements with
minimal reactor background.Comment: 4 pages, 2 figure
Near-Infrared, Adaptive Optics Observations of the T Tauri Multiple-Star System
With high-angular-resolution, near-infrared observations of the young stellar
object T Tauri at the end of 2002, we show that, contrary to previous reports,
none of the three infrared components of T Tau coincide with the compact radio
source that has apparently been ejected recently from the system (Loinard,
Rodriguez, and Rodriguez 2003). The compact radio source and one of the three
infrared objects, T Tau Sb, have distinct paths that depart from orbital or
uniform motion between 1997 and 2000, perhaps indicating that their interaction
led to the ejection of the radio source. The path that T Tau Sb took between
1997 and 2003 may indicate that this star is still bound to the presumably more
massive southern component, T Tau Sa. The radio source is absent from our
near-infrared images and must therefore be fainter than K = 10.2 (if located
within 100 mas of T Tau Sb, as the radio data would imply), still consistent
with an identity as a low-mass star or substellar object.Comment: 11 pages, 3 figures, submitted to ApJ
Theory of magnon-driven spin Seebeck effect
The spin Seebeck effect is a spin-motive force generated by a temperature
gradient in a ferromagnet that can be detected via normal metal contacts
through the inverse spin Hall effect [K. Uchida {\it et al.}, Nature {\bf 455},
778-781 (2008)]. We explain this effect by spin pumping at the contact that is
proportional to the spin-mixing conductance of the interface, the inverse of a
temperature-dependent magnetic coherence volume, and the difference between the
magnon temperature in the ferromagnet and the electron temperature in the
normal metal [D. J. Sanders and D. Walton, Phys. Rev. B {\bf 15}, 1489 (1977)].Comment: 10 pages, 3 figures, 2 tables. This version is NOT the published PRB
but a version with an erratu
Asymmetric Supernovae from Magneto-Centrifugal Jets
Strong toroidal magnetic fields generated in stellar collapse can generate
magneto-centrifugal jets in analogy to those found in simulations of black hole
accretion and explain why all core collapse supernovae are found to be
substantially asymmetric and predominantly bi-polar. We describe two phases:
the initial LeBlanc-Wilson jet and a subsequent protopulsar or toroidal jet
that propagates at about the core escape velocity. The jets will produce bow
shocks that tend to expel matter, including iron and silicon, into equatorial
tori, accounting for observations of the element distribution in Cas A. A
magnetic ``switch'' mechanism may apply in instances of low density and large
magnetic field with subsequent increase in the speed and collimation of the
toroidal jet, depositing relatively little momentum. The result could be enough
infall to form a black hole with a third, highly relativistic jet that could
catch up to the protopulsar jet after it has emerged from the star. The
interaction of these two jets could generate internal shocks and explain the
presence of iron lines in the afterglow. Recent estimates that typical
gamma-ray burst energy is about 3x10^50 erg imply either a very low efficiency
for conversion of rotation into jets, or a rather rapid turnoff of the jet
process even though the black hole still rotates rapidly. Magnetars and
``hypernovae'' might arise in an intermediate parameter regime of energetic
jets that yield larger magnetic fields and provide more energy than the routine
case, but that are not so tightly collimated that they yield failed supernova.
(slightly abridged)Comment: AASTeX, 29 pages, 2 postscript figures, accepted by ApJ, November 20,
200
Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K
A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using
high-pressure and high-temperature synthesis. A Rietveld refinement based on
powder x-ray diffraction confirms that the superconductors crystallize in the
K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but
with partially occupied apical oxygen sites. It is found that the
superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y
superconductor with constant carrier doping level, i.e., constant d, is
controlled not only by order/disorder of apical-O atoms but also by Ba content.
Tcmax =98 K is achieved in the material with x=0.6 that reaches the record
value of Tc among the single-layer copper oxide superconductors, and is higher
than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is
Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The
result indicates that another effect surpasses the disorder effect that is
related either to the increased in-plane Cu-O bond length or to elongated
apical-O distance due to Ba substitution with larger cation size. The present
experiment demonstrates that the optimization of local geometry out of the Cu-O
plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
- …