5 research outputs found

    Magnetized Kelvin-Helmholtz instability in the presence of a radiation field

    Full text link
    The purpose of this study is to analyze the dynamical role of a radiation field on the growth rate of the unstable Kelvin - Helmholtz (KH) perturbations. As a first step toward this purpose, the analyze is done in a general way, irrespective of applying the model to a specific astronomical system. The transition zone between the two layers of the fluid is ignored. Then, we perform a linear analysis and by imposing suitable boundary conditions and considering a radiation field, we obtain appropriate dispersion relation. Unstable modes are studied by solving the dispersion equation numerically, and then growth rates of them are obtained. By analyzing our dispersion relation, we show that for a wide range of the input parameters, the radiation field has a destabilizing effect on KH instability. In eruptions of the galaxies or supermassive stars, the radiation field is dynamically important and because of the enhanced KH growth rates in the presence of the radiation; these eruptions can inject more momentum and energy into their environment and excite more turbulent motions.Comment: Accepted for publication in Astrophysics and Space Scienc

    Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    No full text
    The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ∼4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure

    Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars

    No full text

    Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    No full text

    Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    No full text
    corecore