2 research outputs found

    Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems

    Full text link
    We analyze the dynamics of a charged particle moving in the presence of spatially-modulated magnetic fields. From Poincare surfaces of section and Liapunov exponents for characteristic trajectories we find that the fraction of pinned and runaway quasiperiodic orbits {\em vs}. chaotic orbits depends strongly on the ratio of cyclotron radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete characterization of the dynamical behavior of such structures, and investigate the contribution to the magnetoconductivity from all different orbits using a classical Kubo formula. Although the DC conductivity of the system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology of all different orbits, and even their unusual temporal behavior.Comment: Submitted to PRB - 14 figure files - REVTEX tex

    Anisotropic scattering and quantum magnetoresistivities of a periodically modulated 2D electron gas

    Full text link
    We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approximation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experiments.Comment: 19 pages, 8 figures, Revtex, to appear in Phys. Rev.
    corecore