136 research outputs found

    Self-consistent Spectral Function for Non-Degenerate Coulomb Systems and Analytic Scaling Behaviour

    Full text link
    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW^0-method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n=10^17/cm^3-10^27/cm^3, T=10^2 eV/k_B-10^4 eV/k_B). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, Im Sigma ~ -n^(1/4). This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density.Comment: 28 pages, 9 figure

    Electron-ion temperature relaxation in warm dense hydrogen observed with picosecond resolved X-Ray scattering

    Get PDF
    Angularly resolved X-ray scattering measurements from fs-laser heated hydrogen have been used to determine the equilibration of electron and ion temperatures in the warm dense matter regime. The relaxation of rapidly heated cryogenic hydrogen is visualized using 5.5 keV X-ray pulses from the Linac Coherent Light (LCLS) source in a 1 Hz repetition rate pump-probe setting. We demonstrate that the electron-ion energy transfer is faster than quasi-classical Landau-Spitzer models that use ad hoc cutoffs in the Coulomb logarithm

    X-ray Thomson scattering diagnostics of impact ionization in laser-driven carbon foils

    No full text
    We have studied the light–matter interaction of ultra-short, intense optical laser fields with thin carbon foils via particle-in-cell simulations. Especially, the influence of additional impact ionization on the density and temperature of the generated plasma and on the corresponding Thomson scattering spectra was investigated. We predict a pump–probe experiment at the free electron laser FLASH in order to verify the importance of this effect in the laser–matter interaction on ultra-short time scales and to check our predictions quantitatively
    • …
    corecore