575 research outputs found
Vocal communication in gibbons.
Many non-human primates use vocal communication referentially and also use simple syntax and grammar. However, their comparative vocal repertoires are disappointingly sparse, with many researchers concluding that they have fixed vocal patterns made up of a limited number of discrete units used in a relatively small array of contexts (see McComb & Semple, 2005 for a review). Furthermore, these vocal patterns seem to be innate, under high genetic control with little evidence for vocal learning – something that humans are masters at (Janik & Slater 1997). This leaves us with some questions. Firstly, how did humans become so adept at producing and learning vocal sounds? And, secondly, are there any extant primate species with vocal behaviours that can be directly compared to our own?
Asymmetric Reproductive Isolation between Two Sympatric Annual Killifish with Extremely Short Lifespans
BACKGROUND: Interspecific reproductive isolation is typically achieved by a combination of intrinsic and extrinsic barriers. Behavioural isolating barriers between sympatric, closely related species are often of primary importance and frequently aided by extrinsic factors causing spatial and temporal interspecific separation. Study systems with a severely limited role of extrinsic factors on reproductive isolation may provide valuable insights into how reproductive isolation between sympatric species is maintained. We used no-choice experimental set-up to study reproductive barriers between two closely related sympatric African killifish species, Nothobranchius furzeri and Nothobranchius orthonotus. These fish live in small temporary savannah pools and have complete spatial and temporal overlap in reproductive activities and share a similar ecology. PRINCIPAL FINDINGS: We found that the two species display largely incomplete and asymmetric reproductive isolation. Mating between N. furzeri males and N. orthonotus females was absent under standard experimental conditions and eggs were not viable when fish were forced to mate in a modified experimental setup. In contrast, male N. orthonotus indiscriminately mated with N. furzeri females, the eggs were viable, and offspring successfully hatched. Most spawnings, however, were achieved by male coercion and egg production and embryo survival were low. Behavioural asymmetry was likely facilitated by mating coercion from larger males of N. orthonotus and at relatively low cost to females. Interestingly, the direction of asymmetry was positively associated with asymmetry in post-mating reproductive barriers. SIGNIFICANCE: We showed that, in fish species with a promiscuous mating system and multiple matings each day, selection for strong mate preferences was relaxed. This effect was likely due to the small proportion of resources allocated to each single mating and the high potential cost to females from mating refusal. We highlight and discuss the fact that males of rarer species may often coercively mate with females of a related, more abundant species
Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition
Background: White-handed gibbons (Hylobates lar) are small Asian apes known for living in stable territories and producing loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female great call, the most conspicuous phrase of the repertoire, has been hypothesized to function in intra-sexual territorial defense. We therefore predicted that characteristics of the great call would correlate with a caller’s physical condition, and thus might honestly reflect resource holding potential (RHP). Because measurement of RHP is virtually impossible for wild animals, we used age as a proxy, hypothesizing that great call climaxes are difficult to produce and maintain over time, and that older adults will therefore perform lower quality great calls than young adults. To test this we analyzed the great call climaxes of 15 wild lar gibbon females at Khao Yai National Park, Thailand and 2 captive females at Leo Conservation Center, Greenwich, CT. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary.
Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m).
Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary
Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California
A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions
Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr
The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers.As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures.This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410
has been developed by Hamamatsu for dark matter direct detection experiments
using liquid xenon as the target material. We present the results from the
joint effort between the XENON collaboration and the Hamamatsu company to
produce a highly radio-pure photosensor (version R11410-21) for the XENON1T
dark matter experiment. After introducing the photosensor and its components,
we show the methods and results of the radioactive contamination measurements
of the individual materials employed in the photomultiplier production. We then
discuss the adopted strategies to reduce the radioactivity of the various PMT
versions. Finally, we detail the results from screening 216 tubes with
ultra-low background germanium detectors, as well as their implications for the
expected electronic and nuclear recoil background of the XENON1T experiment.Comment: 10 pages, 5 figure
Search for Event Rate Modulation in XENON100 Electronic Recoil Data
We have searched for periodic variations of the electronic recoil event rate
in the (2-6) keV energy range recorded between February 2011 and March 2012
with the XENON100 detector, adding up to 224.6 live days in total. Following a
detailed study to establish the stability of the detector and its background
contributions during this run, we performed an un-binned profile likelihood
analysis to identify any periodicity up to 500 days. We find a global
significance of less than 1 sigma for all periods suggesting no statistically
significant modulation in the data. While the local significance for an annual
modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and
the phase of the modulation disfavor a dark matter interpretation. The
DAMA/LIBRA annual modulation interpreted as a dark matter signature with
axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure
Search for Two-Neutrino Double Electron Capture of Xe with XENON100
Two-neutrino double electron capture is a rare nuclear decay where two
electrons are simultaneously captured from the atomic shell. For Xe
this process has not yet been observed and its detection would provide a new
reference for nuclear matrix element calculations. We have conducted a search
for two-neutrino double electron capture from the K-shell of Xe using
7636 kgd of data from the XENON100 dark matter detector. Using a
Bayesian analysis we observed no significant excess above background, leading
to a lower 90 % credibility limit on the half-life
yr. We also evaluated the sensitivity of the XENON1T experiment, which is
currently being commissioned, and find a sensitivity of
yr after an exposure of 2 tyr.Comment: 6 pages, 4 figure
- …