142 research outputs found
Gamma Ray Burst Neutrinos Probing Quantum Gravity
Very high energy, short wavelength, neutrinos may interact with the
space-time foam predicted by theories of quantum gravity. They would propagate
like light through a crystal lattice and be delayed, with the delay depending
on the energy. This will appear to the observer as a violation of Lorenz
invariance. Back of the envelope calculations imply that observations of
neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We
revisit the problem considering two essential complications: the imprecise
timing of the neutrinos associated with their poorly understood production
mechanism in the source and the indirect nature of their energy measurement
made by high energy neutrino telescopes.Comment: 14 pages, 2 figure
Voids in the Large-Scale Structure
Voids are the most prominent feature of the LSS of the universe. Still, they
have been generally ignored in quantitative analysis of it, essentially due to
the lack of an objective tool to identify and quantify the voids. To overcome
this, we present the Void-Finder algorithm, a novel tool for objectively
quantifying galaxy voids. The algorithm classifies galaxies as either wall- or
field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids
are defined as continuous volumes that do not contain any wall-galaxies. The
voids must be thicker than an adjustable limit, which is refined in successive
iterations. We test the algorithm using Voronoi tessellations. By appropriate
scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2
Jy. Both surveys show similar properties: ~50% of the volume is filled by the
voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint
galaxies populate the voids more than bright ones. These results suggest that
both optically and IRAS selected galaxies delineate the same LSS. Comparison
with the recovered mass distribution further suggests that the observed voids
in the galaxy distribution correspond well to under-dense regions in the mass
distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and
natbib, 1 table, 12 PS figures. Complete gzipped version is available at
http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at
http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i
Recommended from our members
Implications of the Early X-Ray Afterglow Light Curves of Swift GRBs
According to current models, gamma-ray bursts (GRBs) are produced when the energy carried by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process, {epsilon}{sub {gamma}}, is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy injection. When combined with previous estimates, which have concluded that the kinetic energy of the late ({approx}> 10 hr) afterglow is comparable to the energy emitted in {gamma}-rays, this interpretation implies very high values of {epsilon}{sub {gamma}}, corresponding to {approx}> 90% of the initial energy being converted into {gamma}-rays. Such a high efficiency is hard to reconcile with most models, including in particular the popular internal-shocks model. We re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of the efficiency. We confirm that, if the flattish decay arises from energy injection and the pre-Swift broad-band estimates of the kinetic energy are correct, then {epsilon}{sub {gamma}} {approx}> 0.9. We discuss various issues related to this result, including an alternative interpretation of the light curve in terms of a two-component outflow model, which we apply to the X-ray observations of GRB 050315. We point out, however, that another interpretation of the flattish decay--a variable X-ray afterglow efficiency (e.g., due to a time dependence of afterglow shock microphysical parameters)--is possible. We also show that direct estimates of the kinetic energy from the late X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g., by overestimating the fraction of electrons that are accelerated to relativistic energies). Either one of these possibilities implies a lower {gamma}-ray efficiency, and their joint effect could conceivably reduce the estimate of the typical {epsilon}{sub {gamma}} to a value in the range {approx} 0.1-0.5
Probing the quantum-gravity realm with slow atoms
For the study of Planck-scale modifications of the energy-momentum dispersion
relation, which had been previously focused on the implications for
ultrarelativistic (ultrafast) particles, we consider the possible role of
experiments involving nonrelativistic particles, and particularly atoms. We
extend a recent result establishing that measurements of "atom-recoil
frequency" can provide insight that is valuable for some theoretical models.
And from a broader perspective we analyze the complementarity of the
nonrelativistic and the ultrarelativistic regimes in this research area.Comment: LaTex, 13 page
Information in Black Hole Radiation
If black hole formation and evaporation can be described by an matrix,
information would be expected to come out in black hole radiation. An estimate
shows that it may come out initially so slowly, or else be so spread out, that
it would never show up in an analysis perturbative in , or in 1/N
for two-dimensional dilatonic black holes with a large number of minimally
coupled scalar fields.Comment: 12 pages, 1 PostScript figure, LaTeX, Alberta-Thy-24-93 (In response
to Phys. Rev. Lett. referees' comments, the connection between expansions in
inverse mass and in 1/N are spelled out, and a figure is added. An argument
against perturbatively predicting even late-time information is also
provided, as well as various minor changes.
Bounding the Hubble flow in terms of the w parameter
The last decade has seen increasing efforts to circumscribe and bound the
cosmological Hubble flow in terms of model-independent constraints on the
cosmological fluid - such as, for instance, the classical energy conditions of
general relativity. Quite a bit can certainly be said in this regard, but much
more refined bounds can be obtained by placing more precise constraints (either
theoretical or observational) on the cosmological fluid. In particular, the use
of the w-parameter (w=p/rho) has become increasingly common as a surrogate for
trying to say something about the cosmological equation of state. Herein we
explore the extent to which a constraint on the w-parameter leads to useful and
nontrivial constraints on the Hubble flow, in terms of constraints on density
rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological
distances d(z), and lookback time T(z). In contrast to other partial results in
the literature, we carry out the computations for arbitrary values of the space
curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page
The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations
Long-lived >100 MeV emission has been a common feature of most Fermi-LAT
detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs
080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent
with being produced by synchrotron emission of electrons accelerated to high
energy by the relativistic collisionless shock propagating into the weakly
magnetized medium. Here we show that this high-energy afterglow emission
constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8}
mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than
the previous constraint by X-ray afterglow observations on day scale. This
suggests that the preshock magnetic field is strongly amplified, most likely by
the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
Semiclassical Effects and the Onset of Inflation
We present a class of exact solutions to the constraint equations of General
Relativity coupled to a Klein - Gordon field, these solutions being isotropic
but not homogeneous. We analyze the subsequent evolution of the consistent
Cauchy data represented by those solutions, showing that only certain special
initial conditions eventually lead to successfull Inflationary cosmologies. We
argue, however, that these initial conditions are precisely the likely outcomes
of quantum events occurred before the inflationary era.Comment: 22 pages, file written in RevTe
The optical afterglow of the short gamma-ray burst GRB 050709
It has long been known that there are two classes of gamma-ray bursts (GRBs),
mainly distinguished by their durations. The breakthrough in our understanding
of long-duration GRBs (those lasting more than ~2 s), which ultimately linked
them with energetic Type Ic supernovae, came from the discovery of their
long-lived X-ray and optical afterglows, when precise and rapid localizations
of the sources could finally be obtained. X-ray localizations have recently
become available for short (duration <2 s) GRBs, which have evaded optical
detection for more than 30 years. Here we report the first discovery of
transient optical emission (R-band magnitude ~23) associated with a short
burst; GRB 050709. The optical afterglow was localized with subarcsecond
accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and
X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows
of long GRBs, which are attributable to synchrotron emission from
ultrarelativistic ejecta. We did not, however, detect a supernova, as found in
most nearby long GRB afterglows, which suggests a different origin for the
short GRBs.Comment: 11 pages, 3 figures, press material at http://www.astro.ku.dk/dark
The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy
Observations of the extraordinarily bright optical afterglow (OA) of GRB
991208 started 2.1 d after the event. The flux decay constant of the OA in the
R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect,
and after that it is followed by a much steeper decay with constant -3.2 +/-
0.2, the fastest one ever seen in a GRB OA. A negative detection in several
all-sky films taken simultaneously to the event implies either a previous
additional break prior to 2 d after the occurrence of the GRB (as expected from
the jet effect). The existence of a second break might indicate a steepening in
the electron spectrum or the superposition of two events. Once the afterglow
emission vanished, contribution of a bright underlying SN is found, but the
light curve is not sufficiently well sampled to rule out a dust echo
explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7
Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be
relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB
coincides within 0.2" with the host galaxy, thus given support to a massive
star origin. The absolute magnitude is M_B = -18.2, well below the knee of the
galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1
Mo/yr. The quasi-simultaneous broad-band photometric spectral energy
distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0)
implying a cooling frequency below the optical band, i.e. supporting a jet
model with p = -2.30 as the index of the power-law electron distribution.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 6
figures (Fig. 3 and Fig. 4 have been updated
- âŠ