1 research outputs found
Perturbations of Noise: The origins of Isothermal Flows
We make a detailed analysis of both phenomenological and analytic background
for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634).
A corresponding theory of the isothermal Brownian motion of particle ensembles
(Smoluchowski diffusion process approximation), gives account of the
environmental recoil effects due to locally induced tiny heat flows. By means
of local expectation values we elevate the individually negligible phenomena to
a non-negligible (accumulated) recoil effect on the ensemble average. The main
technical input is a consequent exploitation of the Hamilton-Jacobi equation as
a natural substitute for the local momentum conservation law. Together with the
continuity equation (alternatively, Fokker-Planck), it forms a closed system of
partial differential equations which uniquely determines an associated
Markovian diffusion process. The third Newton law in the mean is utilised to
generate diffusion-type processes which are either anomalous (enhanced), or
generically non-dispersive.Comment: Latex fil