2,324 research outputs found
Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''
The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be
published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5
efficiency bound for loss compensation in optical homodyne tomography. In our
reply we demonstrate that neither does such a rigorous bound exist nor is the
bound required for ruling out the state reconstruction of an individual system
[G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review
Distinguishing mixed quantum states: Minimum-error discrimination versus optimum unambiguous discrimination
We consider two different optimized measurement strategies for the
discrimination of nonorthogonal quantum states. The first is conclusive
discrimination with a minimum probability of inferring an erroneous result, and
the second is unambiguous, i. e. error-free, discrimination with a minimum
probability of getting an inconclusive outcome, where the measurement fails to
give a definite answer. For distinguishing between two mixed quantum states, we
investigate the relation between the minimum error probability achievable in
conclusive discrimination, and the minimum failure probability that can be
reached in unambiguous discrimination of the same two states. The latter turns
out to be at least twice as large as the former for any two given states. As an
example, we treat the case that the state of the quantum system is known to be,
with arbitrary prior probability, either a given pure state, or a uniform
statistical mixture of any number of mutually orthogonal states. For this case
we derive an analytical result for the minimum probability of error and perform
a quantitative comparison to the minimum failure probability.Comment: Replaced by final version, accepted for publication in Phys. Rev. A.
Revtex4, 6 pages, 3 figure
Programmable quantum state discriminators with simple programs
We describe a class of programmable devices that can discriminate between two
quantum states. We consider two cases. In the first, both states are unknown.
One copy of each of the unknown states is provided as input, or program, for
the two program registers, and the data state, which is guaranteed to be
prepared in one of the program states, is fed into the data register of the
device. This device will then tell us, in an optimal way, which of the
templates stored in the program registers the data state matches. In the second
case, we know one of the states while the other is unknown. One copy of the
unknown state is fed into the single program register, and the data state which
is guaranteed to be prepared in either the program state or the known state, is
fed into the data register. The device will then tell us, again optimally,
whether the data state matches the template or is the known state. We determine
two types of optimal devices. The first performs discrimination with minimum
error, the second performs optimal unambiguous discrimination. In all cases we
first treat the simpler problem of only one copy of the data state and then
generalize the treatment to n copies. In comparison to other works we find that
providing n > 1 copies of the data state yields higher success probabilities
than providing n > 1 copies of the program states.Comment: 17 pages, 5 figure
Minimum-error discrimination between subsets of linearly dependent quantum states
A measurement strategy is developed for a new kind of hypothesis testing. It
assigns, with minimum probability of error, the state of a quantum system to
one or the other of two complementary subsets of a set of N given
non-orthogonal quantum states occurring with given a priori probabilities. A
general analytical solution is obtained for N states that are restricted to a
two-dimensional subspace of the Hilbert space of the system. The result for the
special case of three arbitrary but linearly dependent states is applied to a
variety of sets of three states that are symmetric and equally probable. It is
found that, in this case, the minimum error probability for distinguishing one
of the states from the other two is only about half as large as the minimum
error probability for distinguishing all three states individually.Comment: Representation improved and generalized, references added. Accepted
as a Rapid Communication in Phys. Rev.
Compositional Performance Modelling with the TIPPtool
Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations
The Fate of Visible Features of Invisible Elements
To investigate the integration of features, we have developed a paradigm in which an element is rendered invisible by visual masking. Still, the features of the element are visible as part of other display elements presented at different locations and times (sequential metacontrast). In this sense, we can âtransportâ features non-retinotopically across space and time. The features of the invisible element integrate with features of other elements if and only if the elements belong to the same spatio-temporal group. The mechanisms of this kind of feature integration seem to be quite different from classical mechanisms proposed for feature binding. We propose that feature processing, binding, and integration occur concurrently during processes that group elements into wholes
Minimum-error discrimination between symmetric mixed quantum states
We provide a solution of finding optimal measurement strategy for
distinguishing between symmetric mixed quantum states. It is assumed that the
matrix elements of at least one of the symmetric quantum states are all real
and nonnegative in the basis of the eigenstates of the symmetry operator.Comment: 10 page
Reduced 1/f noise in p-Si0.3Ge0.7 metamorphic metalâoxideâsemiconductor field-effect transistor
We have demonstrated reduced 1/f low-frequency noise in sub-”m metamorphic high Ge content p-Si0.3Ge0.7 metalâoxideâsemiconductor field-effect transistors (MOSFETs) at 293 K. Three times lower normalized power spectral density (NPSD) SID/ID2 of drain current fluctuations over the 1â100 Hz range at VDS = â50 mV and VGâVth = â1.5 V was measured for a 0.55 ”m effective gate length p-Si0.3Ge0.7 MOSFET compared with a p-Si MOSFET. Performed quantitative analysis clearly demonstrates the importance of carrier number fluctuations and correlated mobility fluctuations (CMFs) components of 1/f noise for p-Si surface channel MOSFETs, and the absence of CMFs for p-Si0.3Ge0.7 buried channel MOSFETs. This explains the reduced NPSD for p-Si0.3Ge0.7 MOSFETs in strong inversion
Pointlike probes of superstring-theoretic superfluids
In analogy with an experimental setup used in liquid helium, we use a
pointlike probe to study superfluids which have a gravity dual. In the gravity
description, the probe is represented by a hanging string. We demonstrate that
there is a critical velocity below which the probe particle feels neither drag
nor stochastic forces. Above this critical velocity, there is power-law scaling
for the drag force, and the stochastic forces are characterized by a finite,
velocity-dependent temperature. This temperature participates in two simple and
general relations between the drag force and stochastic forces. The formula we
derive for the critical velocity indicates that the low-energy excitations are
massless, and they demonstrate the power of stringy methods in describing
strongly coupled superfluids.Comment: 17 pages, 2 figures, added a figure, a reference, and moved material
to an appendi
- âŠ