39 research outputs found
Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype
BACKGROUND: We aimed to clarify the incidence and the clinicopathological value of non-muscle myoglobin (Mb) in a large cohort of non-invasive and invasive breast cancer cases. METHODS: Matched pairs of breast tissues from 10 patients plus 17 breast cell lines were screened by quantitative PCR for Mb mRNA. In addition, 917 invasive and 155 non-invasive breast cancer cases were analysed by immunohistochemistry for Mb expression and correlated to clinicopathological parameters and basal molecular characteristics including oestrogen receptor-alpha (ERalpha)/progesteron receptor (PR)/HER2, fatty acid synthase (FASN), hypoxia-inducible factor-1alpha (HIF-1alpha), HIF-2alpha, glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX). The spatial relationship of Mb and ERalpha or FASN was followed up by double immunofluorescence. Finally, the effects of estradiol treatment and FASN inhibition on Mb expression in breast cancer cells were analysed. RESULTS: Myoglobin mRNA was found in a subset of breast cancer cell lines; in microdissected tumours Mb transcript was markedly upregulated. In all, 71% of tumours displayed Mb protein expression in significant correlation with a positive hormone receptor status and better prognosis. In silico data mining confirmed higher Mb levels in luminal-type breast cancer. Myoglobin was also correlated to FASN, HIF-2alpha and CAIX, but not to HIF-1alpha or GLUT1, suggesting hypoxia to participate in its regulation. Double immunofluorescence showed a cellular co-expression of ERalpha or FASN and Mb. In addition, Mb levels were modulated on estradiol treatment and FASN inhibition in a cell model. CONCLUSION: We conclude that in breast cancer, Mb is co-expressed with ERalpha and co-regulated by oestrogen signalling and can be considered a hallmark of luminal breast cancer phenotype. This and its possible new role in fatty acid metabolism may have fundamental implications for our understanding of Mb in solid tumours
New and revised occurrences of Ordovician crinoids from southwestern Europe
10 páginas.A comprehensive treatment of Ordovician crinoids from southwestern Europe is presented, including taxa based on articulated crowns and stems. This summary incorporates new material, new localities, and a revision of some southwestern Europe occurrences. The first record of an Ordovician crinoid from Portugal, Delgadocrinus oportovinum n. gen. and sp., is reported, and this is the oldest known crinoid from the Iberian Peninsula (Arenigian/Oretanian boundary, early Darriwilian). Geographic and temporal ranges of several crinoids are revised from peri-Gondwanan areas in southwestern Europe and northern Africa or modified with new Iberian material. The Spanish range of Heviacrinus melendezi Gil Cid et al., 1996 is extended down into the lower upper Oretanian, and Merocrinus millanae Ausich et al., 2002 is restricted to the upper lower Dobrotivian. The stratigraphic position of Ortsaecrinus cocae Gil Cid et al., 1999b is restricted to the early middle Berounian, and the range of Visocrinus castelli Ausich et al., 2002 is restricted to the late middle Berounian (see Fig. 2). New topotype material of Morenacrinus silvani Ausich et al., 2002 is reported that furthers understanding of the occurrence this taxon, which was previously only positively known from the holotype.Peer reviewe
Vasculoprotective Effects of Dietary Cocoa Flavanols in Patients on Hemodialysis: A Double-Blind, Randomized, Placebo-Controlled Trial
Background and objectives: Hemodialysis (HD) per se entails vascular dysfunction in patients with ESRD. Endothelial dysfunction is a key step in atherosclerosis and is characterized by impaired flow–mediated dilation (FMD). Interventional studies have shown that cocoa flavanol (CF)–rich supplements improve vascular function. Aim of this study was to investigate the effect of flavanol–rich bioactive food ingredients on acute and chronic HD–induced vascular dysfunction in ESRD. Design, setting, participants, & measurements: We conducted a randomized, double–blind, placebo–controlled trial from 2012 to 2013. Fifty-seven participants were enrolled, ingested CF-rich beverages (900 mg CF per study day), and were compared with those ingesting CF-free placebo. This included (1) a baseline cross–over acute study to determine safety and efficacy of CF and (2) a subsequent chronic parallel group study with a 30-day follow-up period to study effects of CF on HD–mediated vascular dysfunction entailing (3) an acute substudy during HD in flavanol-naive patients and (4) an acute on chronic study during HD. Primary and secondary outcome measures included changes in FMD and hemodynamics. Results: CF ingestion was well tolerated. Acute ingestion improved FMD by 53% (3.2±0.6% to 4.8±0.9% versus placebo, 3.2±0.7% to 3.3±0.8%; P<0.001), with no effects on BP or heart rate. A 30-day ingestion of CF led to an increase in baseline FMD by 18% (3.4±0.9% to 3.9±0.8% versus placebo, 3.5±0.7% to 3.5±0.7%; P<0.001), with reduced diastolic BP (73±12 to 69±11 mmHg versus placebo, 70±11 to 73±13 mmHg; P=0.03) and increased heart rate (70±12 to 74±13 bpm versus placebo, 75±15 to 74±13 bpm; P=0.01). No effects were observed for placebo. Acute ingestion of CF during HD alleviated HD–induced vascular dysfunction (3.4±0.9% to 2.7±0.6% versus placebo, 3.5±0.7% to 2.0±0.6%; P<0.001). This effect was sustained throughout the study (acute on chronic, 3.9±0.9% to 3.0±0.7% versus placebo, 3.5±0.7% to 2.2±0.6; P=0.01). Conclusions: Dietary CF ingestion mitigates acute HD–induced and chronic endothelial dysfunction in patients with ESRD and thus, improves vascular function in this high-risk population. Larger clinical trials are warranted to test whether this translates into an improved cardiovascular prognosis in patients with ESRD
Vasculoprotective Effects of Dietary Cocoa Flavanols in Patients on Hemodialysis: A Double-Blind, Randomized, Placebo-Controlled Trial
Background and objectives: Hemodialysis (HD) per se entails vascular dysfunction in patients with ESRD. Endothelial dysfunction is a key step in atherosclerosis and is characterized by impaired flow–mediated dilation (FMD). Interventional studies have shown that cocoa flavanol (CF)–rich supplements improve vascular function. Aim of this study was to investigate the effect of flavanol–rich bioactive food ingredients on acute and chronic HD–induced vascular dysfunction in ESRD.
Design, setting, participants, & measurements: We conducted a randomized, double–blind, placebo–controlled trial from 2012 to 2013. Fifty-seven participants were enrolled, ingested CF-rich beverages (900 mg CF per study day), and were compared with those ingesting CF-free placebo. This included (1) a baseline cross–over acute study to determine safety and efficacy of CF and (2) a subsequent chronic parallel group study with a 30-day follow-up period to study effects of CF on HD–mediated vascular dysfunction entailing (3) an acute substudy during HD in flavanol-naive patients and (4) an acute on chronic study during HD. Primary and secondary outcome measures included changes in FMD and hemodynamics.
Results: CF ingestion was well tolerated. Acute ingestion improved FMD by 53% (3.2±0.6% to 4.8±0.9% versus placebo, 3.2±0.7% to 3.3±0.8%; P<0.001), with no effects on BP or heart rate. A 30-day ingestion of CF led to an increase in baseline FMD by 18% (3.4±0.9% to 3.9±0.8% versus placebo, 3.5±0.7% to 3.5±0.7%; P<0.001), with reduced diastolic BP (73±12 to 69±11 mmHg versus placebo, 70±11 to 73±13 mmHg; P=0.03) and increased heart rate (70±12 to 74±13 bpm versus placebo, 75±15 to 74±13 bpm; P=0.01). No effects were observed for placebo. Acute ingestion of CF during HD alleviated HD–induced vascular dysfunction (3.4±0.9% to 2.7±0.6% versus placebo, 3.5±0.7% to 2.0±0.6%; P<0.001). This effect was sustained throughout the study (acute on chronic, 3.9±0.9% to 3.0±0.7% versus placebo, 3.5±0.7% to 2.2±0.6; P=0.01).
Conclusions: Dietary CF ingestion mitigates acute HD–induced and chronic endothelial dysfunction in patients with ESRD and thus, improves vascular function in this high-risk population. Larger clinical trials are warranted to test whether this translates into an improved cardiovascular prognosis in patients with ESRD
Cytosolic BNIP3 dimer interacts with mitochondrial BAX forming heterodimers in the mitochondrial outer membrane under basal conditions
Abstract
The primary function of mitochondria is energy production, a task of particular importance especially for cells with a high energy demand like cardiomyocytes. The B-cell lymphoma (BCL-2) family member BCL-2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is linked to mitochondrial targeting after homodimerization, where it functions in inner membrane depolarization and permeabilization of the mitochondrial outer membrane (MOM) mediating cell death. We investigated the basal distribution of cardiac BNIP3 in vivo and its physical interaction with the pro-death protein BCL2 associated X, apoptosis regulator (BAX) and with mitochondria using immunoblot analysis, co-immunoprecipitation, and continuous wave and pulsed electron paramagnetic resonance spectroscopy techniques. We found that BNIP3 is present as a dimer in the cytosol and in the outer membrane of cardiac mitochondria under basal conditions. It forms disulfide-bridged, but mainly non-covalent dimers in the cytosol. Heterodimers with BAX are formed exclusively in the MOM. Furthermore, our results suggest that BNIP3 interacts with the MOM directly via mitochondrial BAX. However, the physical interactions with BAX and the MOM did not affect the membrane potential and cell viability. These findings suggest that another stimulus other than the mere existence of the BNIP3/BAX dimer in the MOM is required to promote BNIP3 cell-death activity; this could be a potential disturbance of the BNIP3 distribution homeostasis, namely in the direction of the mitochondria
Dietary Nitrate Supplementation Improves Revascularization in Chronic Ischemia
BACKGROUND: Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. METHODS AND RESULTS: Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34(+)/Flk-1(+), migration of bone marrow-derived CD31(+)/CD45(-), plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34(+)/Flk-1(+) and migration of bone marrow-derived CD31(+)/CD45(-) cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. CONCLUSIONS: Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization
Dietary Nitrate Supplementation Improves Revascularization in Chronic Ischemia
BACKGROUND: Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. METHODS AND RESULTS: Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34(+)/Flk-1(+), migration of bone marrow-derived CD31(+)/CD45(-), plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34(+)/Flk-1(+) and migration of bone marrow-derived CD31(+)/CD45(-) cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. CONCLUSIONS: Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization