41 research outputs found

    Dynamics of conversion of supercurrents into normal currents, and vice versa

    Full text link
    The generation and destruction of the supercurrent in a superconductor (S) between two resistive normal (N) current leads connected to a current source is computed from the source equation for the supercurrent density. This equation relates the gradient of the pair potential's phase to electron and hole wavepackets that create and destroy Cooper pairs in the N/S interfaces. Total Andreev reflection and supercurrent transmission of electrons and holes are coupled together by the phase rigidity of the non-bosonic Cooper-pair condensate. The calculations are illustrated by snapshots from a computer film.Comment: 8 pages, 1 figure, accepted by Phys. Rev.

    Supercurrent noise in quantum point contacts

    Full text link
    Spectral density of current fluctuations in a short ballistic superconducting quantum point contact is calculated for arbitrary bias voltages VV. Contrary to a common opinion that the supercurrent flow in Josephson junctions is coherent process with no fluctuations, we find extremely large current noise that is {\em caused} by the supercurrent coherence. An unusual feature of the noise, besides its magnitude, is its voltage dependence: the noise decreases with increasing VV, despite the fact that the dc current grows steadily with VV. At finite voltages the noise can be qualitatively understood as the shot noise of the large charge quanta of magnitude 2Δ/V2\Delta /V equal to the charge transferred during one period of Josephson oscillations.Comment: 12 pages, revtex, 2 figures by fax/conventional mail upon reques

    Adiabatic Dynamics of Superconducting Quantum Point Contacts

    Full text link
    Starting from the quasiclassical equations for non-equilibrium Green's functions we derive a simple kinetic equation that governs ac Josephson effect in a superconducting quantum point contact at small bias voltages. In contrast to existing approaches the kinetic equation is valid for voltages with arbitrary time dependence. We use this equation to calculate frequency-dependent linear conductance, and dc I ⁣ ⁣VI\!-\!V characteristics with and without microwave radiation for resistively shunted quantum point contacts. A novel feature of the I ⁣ ⁣VI\!-\!V characteristics is the excess current 2Ic/π2I_c/\pi appearing at small voltages. An important by-product of our derivation is the analytical proof that the microscopic expression for the current coincides at arbitrary voltages with the expression that follows from the Bogolyubov-de Gennes equations, if one uses appropriate amplitudes of Andreev reflection which contain information about microscopic structure of the superconductors.Comment: 12 Pages, REVTEX 3.0, 3 figures available upon reques

    Superconducting single-mode contact as a microwave-activated quantum interferometer

    Full text link
    The dynamics of a superconducting quantum point contact biased at subgap voltages is shown to be strongly affected by a microwave electromagnetic field. Interference among a sequence of temporally localized, microwave-induced Landau-Zener transitions between current carrying Andreev levels results in energy absorption and in an increase of the subgap current by several orders of magnitude. The contact is an interferometer in the sense that the current is an oscillatory function of the inverse bias voltage. Possible applications to Andreev-level spectroscopy and microwave detection are discussed

    Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts

    Full text link
    We analyze the current in a superconducting point contact of arbitrary transmission in the presence of a microwave radiation. The interplay between the ac Josephson current and the microwave signal gives rise to Shapiro steps at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and \omega_r is the radiation frequency. The subharmonic steps (n different from 1) are a consequence of the ocurrence of multiple Andreev reflections (MAR) and provide an unambiguous signature of the peculiar ac Josephson effect at high transmission. Moreover, the dc current exhibits a rich subgap structure due to photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR

    Coherent Charge Transport in Metallic Proximity Structures

    Full text link
    We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the presence of proximity induced superconducting correlation. We calculated the linear conductance of the system, the profile of the electric field and the densities of states. In the case of transparent metallic boundaries the temperature dependent conductance has a non-monotoneous ``reentrant'' structure. We argue that this behavior is due to nonequilibrium effects occuring in the normal metal in the presence of both superconducting correlations and the electric field there. Low transparent tunnel barriers suppress the nonequilibrium effects and destroy the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm oscillations with the period Φ0=h/2e\Phi_0=h/2e as a function of the magnetic flux Φ\Phi inside the loop. The amplitude of these oscillations also demonstrates the reentrant behavior vanishing at T=0T=0 and decaying as 1/T1/T at relatively large temperatures. The latter behavior is due to low energy correlated electrons which penetrate deep into the normal metal and ``feel'' the effect of the magnetic flux Φ\Phi. We point out that the density of states and thus the ``strengh'' of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully consistent with recent experimental findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.

    Theory of AC Josepson Effect in Superconducting Constrictions

    Full text link
    We have developed a microscopic theory of ac Josephson effect in short ballistic superconducting constrictions with arbitrary electron transparency and in constrictions with diffusive electron transport. The theory is valid for arbitrary miscroscopic structure of the superconducting electrodes of the constriction. As applications of the theory we study smearing of the subgap current singularities by pair-breaking effects and also the structure of these singularities in the constrictions between the composite S/N electrodes with the proximity-induced gap in the normal layer.Comment: 11 pages, RevTex, 3 figures available on reques

    Circuit theory of multiple Andreev reflections in diffusive SNS junctions: the incoherent case

    Full text link
    The incoherent regime of Multiple Andreev Reflections (MAR) is studied in long diffusive SNS junctions at applied voltages larger than the Thouless energy. Incoherent MAR is treated as a transport problem in energy space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is explained in terms of diffusion flows of electrons and holes through tunnel and Andreev resistors. These resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in OTBK theory for ballistic junctions. The theory is applied to the subharmonic gap structure (SGS); simple analytical results are obtained for the distribution function and current spectral density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution is found in terms of chain-fractions, and the current is calculated numerically. SGS shows qualitatively different behavior for even and odd subharmonic numbers, and the maximum slopes of the differential resistance correspond to the gap subharmonics. The influence of inelastic scattering on the subgap anomalies of the differential resistance is analyzed.Comment: 14 pages, 9 figures, title and text revised, to appear in PR

    Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions

    Full text link
    We present a detailed study of nonequilibrium Josephson currents and conductance in ballistic multiterminal SNS-devices. Nonequilibrium is created by means of quasiparticle injection from a normal reservoir connected to the normal part of the junction. By applying a voltage at the normal reservoir the Josephson current can be suppressed or the direction of the current can be reversed. For a junction longer than the thermal length, LξTL\gg\xi_T, the nonequilibrium current increases linearly with applied voltage, saturating at a value equal to the equilibrium current of a short junction. The conductance exhibits a finite bias anomaly around eVvF/LeV \sim \hbar v_F/L. For symmetric injection, the conductance oscillates 2π2\pi-periodically with the phase difference ϕ\phi between the superconductors, with position of the minimum (ϕ=0\phi=0 or π\pi) dependent on applied voltage and temperature. For asymmetric injection, both the nonequilibrium Josephson current and the conductance becomes π\pi-periodic in phase difference. Inclusion of barriers at the NS-interfaces gives rise to a resonant behavior of the total Josephson current with respect to junction length with a period λF\sim \lambda_F. Both three and four terminal junctions are studied.Comment: 21 pages, 19 figures, submitted to Phys. Rev.
    corecore