13 research outputs found
Frustration - how it can be measured
A misfit parameter is used to characterize the degree of frustration of
ordered and disordered systems. It measures the increase of the ground-state
energy due to frustration in comparison with that of a relevant reference
state. The misfit parameter is calculated for various spin-glass models. It
allows one to compare these models with each other. The extension of this
concept to other combinatorial optimization problems with frustration, e.g.
p-state Potts glasses, graph-partitioning problems and coloring problems is
given.Comment: 10 pages, 1 table, no figures, uses revtex.st
Dynamic structure factor of the Ising model with purely relaxational dynamics
We compute the dynamic structure factor for the Ising model with a purely
relaxational dynamics (model A). We perform a perturbative calculation in the
expansion, at two loops in the high-temperature phase and at one
loop in the temperature magnetic-field plane, and a Monte Carlo simulation in
the high-temperature phase. We find that the dynamic structure factor is very
well approximated by its mean-field Gaussian form up to moderately large values
of the frequency and momentum . In the region we can investigate,
, , where is the correlation
length and the zero-momentum autocorrelation time, deviations are at
most of a few percent.Comment: 21 pages, 3 figure
Nonequilibrium relaxation of the two-dimensional Ising model: Series-expansion and Monte Carlo studies
We study the critical relaxation of the two-dimensional Ising model from a
fully ordered configuration by series expansion in time t and by Monte Carlo
simulation. Both the magnetization (m) and energy series are obtained up to
12-th order. An accurate estimate from series analysis for the dynamical
critical exponent z is difficult but compatible with 2.2. We also use Monte
Carlo simulation to determine an effective exponent, z_eff(t) = - {1/8} d ln t
/d ln m, directly from a ratio of three-spin correlation to m. Extrapolation to
t = infinity leads to an estimate z = 2.169 +/- 0.003.Comment: 9 pages including 2 figure