507 research outputs found
Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia
Borderline personality disorder (BOR) is determined by environmental and
genetic factors, and characterized by affective instability and impulsivity,
diagnostic symptoms also observed in manic phases of bipolar disorder (BIP).
Up to 20% of BIP patients show comorbidity with BOR. This report describes the
first case–control genome-wide association study (GWAS) of BOR, performed in
one of the largest BOR patient samples worldwide. The focus of our analysis
was (i) to detect genes and gene sets involved in BOR and (ii) to investigate
the genetic overlap with BIP. As there is considerable genetic overlap between
BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of
BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD.
GWAS, gene-based tests and gene-set analyses were performed in 998 BOR
patients and 1545 controls. Linkage disequilibrium score regression was used
to detect the genetic overlap between BOR and these disorders. Single marker
analysis revealed no significant association after correction for multiple
testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 ×
10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant
finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate).
Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The
most notable finding of the present study was the genetic overlap of BOR with
BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57
[P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR
overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined
to transdiagnostic clinical symptoms should be examined in future studies
Recommended from our members
Cobalt and nickel uptake by silica-based extractants
The pKas of ethyl/butyl phosphonate silica (EBP-Si) have been determined, and the removal of cobalt and nickel from solution was investigated as a function of various parameters and compared with those of Purolite S950. pH uptake experiments suggested a combination of ion exchange and acid dissociation of the surface occurring. Isotherm data, fitted using the Langmuir and Dubinin–Radushkevich (D-R) models, indicated that stronger complexes formed with S950 than with EBP-Si. Kinetic data, fitted using a pseudo-second-order model, suggested that the rate-determining process is the reaction of metal ions with the chelating functionality of the resin. Uptake by EBP-Si is two to three times faster than that on S950
"Safe" Coulomb Excitation of 30Mg
We report on the first radioactive beam experiment performed at the recently
commissioned REX-ISOLDE facility at CERN in conjunction with the highly
efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy
of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the
first excited 2+ states of the projectile and target nuclei well below the
Coulomb barrier was observed. From the measured relative de-excitation gamma
ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31)
e2fm4. Our result is lower than values obtained at projectile fragmentation
facilities using the intermediate-energy Coulomb excitation method, and
confirms the theoretical conjecture that the neutron-rich magnesium isotope
30Mg lies still outside the ``island of inversion''
Self-induced transparency in InGaAs quantum-dot waveguides
We report the experimental observation and the theoretical modeling of self-induced-transparency signatures such as nonlinear transmission, pulse retardation and reshaping, for subpicosecond pulse propagation in a 2-mm-long InGaAs quantum-dot ridge waveguide in resonance with the excitonic ground-state transition at 10 K. The measurements were obtained by using a cross-correlation frequency-resolved optical gating technique which allows us to retrieve the field amplitude of the propagating pulses
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
11Be(beta-p), a quasi-free neutron decay?
We have observed beta-delayed proton emission from the neutron-rich nucleus
11Be by analysing a sample collected at the ISOLDE facility at CERN with
accelerator mass spectrometry (AMS). With a branching ratio of (8.4 +- 0.6)
10^{-6} the strength of this decay mode, as measured by the B(GT)-value, is
unexpectedly high. The result is discussed within a simple single-particle
model and could be interpreted as a quasi-free decay of the 11Be halo neutron
into a single-proton state.Comment: 6 pages, 2 figure
Indirect measurements of neutron-induced reaction cross sections at storage rings
Neutron-induced reaction cross sections of unstable nuclei are essential for understanding the synthesis of heavy elements in stars. However, their measurement is very difficult due to the radioactivity of the targets involved. We propose to circumvent this problem by using for the first time the surrogate reaction method in inverse kinematics at heavy-ion storage rings. In this contribution, we describe the developments we have done to perform surrogate-reaction studies at the storage rings of GSI/FAIR. In particular, we present the first results of the proof of principle experiment, which we conducted recently at the Experimental Storage Ring (ESR)
REX-ISOLDE: post-accelerated radioactive BEAMS at CERN-ISOLDE
The ISOLDE RIB-facility at CERN has today been producing a vast range of radioactive beams since more than 30 years. The low-energy beams of ISOLDE will be complemented by a post-accelerator, REX-ISOLDE, currently being assembled. In order to convert the pseudo-DC, singly-charged beam from the ISOLDE mass separators into a cooled and bunched beam at higher charge states a novel scheme of trapping, cooling and charge-state breeding has been devised, using a linear Penning trap and an Electron Beam Ion Source (EBIS). This allows for subsequent acceleration by a short, cost-effective LINAC consisting of an RFQ, an IH-structure and three seven-gap resonators, reaching 0.8 - 2.2 MeV/u. The installation of REX-ISOLDE is well underway and the first post-accelerated radioactive beams are expected to be obtained during late 2000
Shared Genetic Etiology Between Alcohol Dependence and Major Depressive Disorder
The clinical comorbidity of alcohol dependence (AD) and
major depressive disorder (MDD) is well established,
whereas genetic factors influencing co-occurrence remain
unclear. A recent study using polygenic risk scores (PRS)
calculated based on the first-wave Psychiatric Genomics
Consortium MDD meta-analysis (PGC-MDD1) suggests a
modest shared genetic contribution to MDD and AD. Using a
(∼10 fold) larger discovery sample, we calculated PRS
based on the second wave (PGC-MDD2) of results, in a
severe AD case–control target sample. We found significant associations between AD disease status and MDD-PRS derived from both PGC-MDD2 (most informative
P-threshold=1.0, P=0.00063, R2=0.533%) and PGCMDD1
(P-threshold=0.2, P=0.00014, R2=0.663%) metaanalyses;
the larger discovery sample did not yield
additional predictive power. In contrast, calculating PRS in a MDD target sample yielded increased power when using
PGC-MDD2 (P-threshold=1.0, P=0.000038, R2=1.34%)
versus PGC-MDD1 (P-threshold=1.0, P=0.0013,
R2=0.81%). Furthermore, when calculating PGC-MDD2
PRS in a subsample of patients with AD recruited explicitly excluding comorbid MDD, significant associations were still found (n=331; P-threshold=1.0, P=0.042, R2=0.398%). Meanwhile, in the subset of patients in which MDD was not the explicit exclusion criteria, PRS predicted more variance (n=999; P-threshold=1.0, P=0.0003, R2=0.693%). Our findings replicate the reported genetic overlap between AD and MDD and also suggest the need for improved, rigorous phenotyping to identify true shared cross-disorder genetic factors. Larger target samples are needed to reduce noise and take advantage of increasing discovery sample size
- …