32 research outputs found

    Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry

    Full text link
    The multifractal properties of electronic eigenstates at the metal-insulator transition of a two-dimensional disordered tight-binding model with spin-orbit interaction are investigated numerically. The correlation dimensions of the spectral measure D~2\widetilde{D}_{2} and of the fractal eigenstate D2D_{2} are calculated and shown to be related by D2=2D~2D_{2}=2\widetilde{D}_{2}. The exponent η=0.35±0.05\eta=0.35\pm 0.05 describing the energy correlations of the critical eigenstates is found to satisfy the relation η=2D2\eta=2-D_{2}.Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys. Condensed Matte

    The Anderson Transition in Two-Dimensional Systems with Spin-Orbit Coupling

    Full text link
    We report a numerical investigation of the Anderson transition in two-dimensional systems with spin-orbit coupling. An accurate estimate of the critical exponent ν\nu for the divergence of the localization length in this universality class has to our knowledge not been reported in the literature. Here we analyse the SU(2) model. We find that for this model corrections to scaling due to irrelevant scaling variables may be neglected permitting an accurate estimate of the exponent ν=2.73±0.02\nu=2.73 \pm 0.02

    Diffusion of electrons in two-dimensional disordered symplectic systems

    Full text link
    Diffusion of electrons in two-dimensional disordered systems with spin-orbit interactions is investigated numerically. Asymptotic behaviors of the second moment of the wave packet and of the temporal auto-correlation function are examined. At the critical point, the auto-correlation function exhibits the power-law decay with a non-conventional exponent α\alpha which is related to the fractal structure in the energy spectrum and in the wave functions. In the metallic regime, the present results imply that transport properties can be described by the diffusion equation for normal metals.Comment: 4 pages RevTeX. Figures are available on request either via fax or e-mail. To be published in Phys. Rev.

    Critical Level Statistics in Two-dimensional Disordered Electron Systems

    Full text link
    The level statistics in the two dimensional disordered electron systems in magnetic fields (unitary ensemble) or in the presence of strong spin-orbit scattering (symplectic ensemble) are investigated at the Anderson transition points. The level spacing distribution functions P(s)P(s)'s are found to be independent of the system size or of the type of the potential distribution, suggesting the universality. They behave as s2s^2 in the small ss region in the former case, while s4s^4 rise is seen in the latter.Comment: LaTeX, to be published in J. Phys. Soc. Jpn. (Letter) Nov., Figures will be sent on reques

    Conductance fluctuations at the integer quantum Hall plateau transition

    Full text link
    We study numerically conductance fluctuations near the integer quantum Hall effect plateau transition. The system is presumed to be in a mesoscopic regime, with phase coherence length comparable to the system size. We focus on a two-terminal conductance G for square samples, considering both periodic and open boundary conditions transverse to the current. At the plateau transition, G is broadly distributed, with a distribution function close to uniform on the interval between zero and one in units of e^2/h. Our results are consistent with a recent experiment by Cobden and Kogan on a mesoscopic quantum Hall effect sample.Comment: minor changes, 5 pages LaTex, 7 postscript figures included using epsf; to be published Phys. Rev. B 55 (1997

    Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States

    Full text link
    We present two novel approaches to establish the local density of states as an order parameter field for the Anderson transition problem. We first demonstrate for 2D quantum Hall systems the validity of conformal scaling relations which are characteristic of order parameter fields. Second we show the equivalence between the critical statistics of eigenvectors of the Hamiltonian and of the transfer matrix, respectively. Based on this equivalence we obtain the order parameter exponent α03.4\alpha_0\approx 3.4 for 3D quantum Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.

    A topological characterization of delocalization in a spin-orbit coupling system

    Full text link
    We show that wavefunctions in a two-dimensional (2D) electron system with spin-orbit coupling can be characterized by a topological quantity--the Chern integer due to the existence of the intrinsic Kramers degeneracy. The localization-delocalization transition in such a system is studied in terms of such a Chern number description, which reproduces the known metal-insulator transition point. The present work suggests a unified picture for various known 2D delocalization phenomena based on the same topological characterization.Comment: RevTex, 12 pages; Two PostScript figure

    Anderson transition in three-dimensional disordered systems with symplectic symmetry

    Full text link
    The Anderson transition in a 3D system with symplectic symmetry is investigated numerically. From a one-parameter scaling analysis the critical exponent ν\nu of the localization length is extracted and estimated to be ν=1.3±0.2\nu = 1.3 \pm 0.2. The level statistics at the critical point are also analyzed and shown to be scale independent. The form of the energy level spacing distribution P(s)P(s) at the critical point is found to be different from that for the orthogonal ensemble suggesting that the breaking of spin rotation symmetry is relevant at the critical point.Comment: 4 pages, revtex, to appear in Physical Review Letters. 3 figures available on request either by fax or normal mail from [email protected] or [email protected]

    Statistics of pre-localized states in disordered conductors

    Get PDF
    The distribution function of local amplitudes of single-particle states in disordered conductors is calculated on the basis of the supersymmetric σ\sigma-model approach using a saddle-point solution of its reduced version. Although the distribution of relatively small amplitudes can be approximated by the universal Porter-Thomas formulae known from the random matrix theory, the statistics of large amplitudes is strongly modified by localization effects. In particular, we find a multifractal behavior of eigenstates in 2D conductors which follows from the non-integer power-law scaling for the inverse participation numbers (IPN) with the size of the system. This result is valid for all fundamental symmetry classes (unitary, orthogonal and symplectic). The multifractality is due to the existence of pre-localized states which are characterized by power-law envelopes of wave functions, ψt(r)2r2μ|\psi_t(r)|^2\propto r^{-2\mu}, μ<1\mu <1. The pre-localized states in short quasi-1D wires have the power-law tails ψ(x)2x2|\psi (x)|^2\propto x^{-2}, too, although their IPN's indicate no fractal behavior. The distribution function of the largest-amplitude fluctuations of wave functions in 2D and 3D conductors has logarithmically-normal asymptotics.Comment: RevTex, 17 twocolumn pages; revised version (several misprint corrected

    Point-Contact Conductances at the Quantum Hall Transition

    Full text link
    On the basis of the Chalker-Coddington network model, a numerical and analytical study is made of the statistics of point-contact conductances for systems in the integer quantum Hall regime. In the Hall plateau region the point-contact conductances reflect strong localization of the electrons, while near the plateau transition they exhibit strong mesoscopic fluctuations. By mapping the network model on a supersymmetric vertex model with GL(2|2) symmetry, and postulating a two-point correlator in keeping with the rules of conformal field theory, we derive an explicit expression for the distribution of conductances at criticality. There is only one free parameter, the power law exponent of the typical conductance. Its value is computed numerically to be X_t = 0.640 +/- 0.009. The predicted conductance distribution agrees well with the numerical data. For large distances between the two contacts, the distribution can be described by a multifractal spectrum solely determined by X_t. Our results demonstrate that multifractality can show up in appropriate transport experiments.Comment: 18 pages, 15 figures included, revised versio
    corecore