14,621 research outputs found

    Phase space dynamics of overdamped quantum systems

    Full text link
    The phase space dynamics of dissipative quantum systems in strongly condensed phase is considered. Based on the exact path integral approach it is shown that the Wigner transform of the reduced density matrix obeys a time evolution equation of Fokker-Planck type valid from high down to very low temperatures. The effect of quantum fluctuations is discussed and the accuracy of these findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let

    Xylanase Production by Penicillium citrinum in Laboratory-scale Stirred Tank Reactor

    Get PDF
    Xylanase constitutes an important class of hydrolases, and is used in numerous industrial applications. The aim of the present work was to study the production of xylanase from Penicillium citrinum MTCC 9620 in a 5 L stirred tank bioreactor. Effect of various process parameters; pH, temperature, aeration, agitation rates, substrate concentration, and, dissolved oxygen (DO) concentration on xylanase production were studied. Combination of all the optimized parameters resulted in 2.5 times higher enzyme activity as compared to the shake flask fermentation after 96 h. Effect of varying agitation and aeration on the volumetric mass transfer coefficient (KLa) was determined. It revealed that KLa is influenced by both aeration and agitation. Growth kinetics of P. citrinum MTCC 9620 in bioreactor was studied using Monod, Moser, Contois and Edward equation. Based on R2, SE and pattern of residuals, the microbial growth kinetics of P. citrinum MTCC 9620 was effectively represented by Moser equation

    Optimization of Xylanase Production from Penicillium citrinum in Solid-State Fermentation

    Get PDF
    Solid-state fermentation of sugarcane bagasse by Penicillium citrinum MTCC 2553 was optimized to maximize the yield of xylanase. Preliminary experiments carried out with various lignocellulosic materials revealed sugarcane bagasse to be the most suitable substrate for producing xylanase. Response surface methodology was used in the optimization. Xylanase activity was maximized in a 5-day batch fermentation carried out under the following conditions: a substrate-to-moisture ratio of 1:5 by mass, an initial pH of 7.0 and an incubation temperature of 30 °C. Under the optimal conditions, the final activity of xylanase was 1645 U g–1 of dry substrate. Xylanase was recovered from an extract of the fermented solids by ammonium sulfate precipitation. The crude enzyme was further purified by dialysis. The activity of the enzyme was enhanced in the presence of Na+, Mg2+, Mn2+, Fe3+, Zn2+, Cu2+, Co2+ and Tween 80. The enzyme was inhibited by Hg2+, Ca2+ and the chelating agent ethylene diamine tetra acetic acid (EDTA)

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    Stress corrosion cracking of copper-manganese alloys-effect of some chemical variables

    Get PDF
    OCCURRENCE of stress corrosion cracking in binary copper-manganese alloys in the presence of ammonia has been first reported by Lahiri1 where it has also been observed that Mattsson's solution2 comprising CuSO4, 5H2O and (NH4)2SO4 and ammonia, a very aggressive medium for stress corrosion cracking of brass, is very much effective in producing ready cracking in copper-manganese alloys. Coppermanganese system provides a wide range of solid solution; in this respect it is comparable to the copperzinc system, the stress corrosion studies of which have been carried out extensively. A few recent papers3'4'5 deal with the elect-rochemical aspects of stress corrosion cracking of alpha brass in Mattsson's solution. In this context it will be of interest to study the behaviour of homogeneous copper-manganese alloys under the variable conditions of Matt-sson's solution to get an insight into the mechanism of stress corrosion cracking

    On the Conditions of Escape of Microwaves of Radio-Frequency Range from the Sun

    Get PDF

    Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

    Full text link
    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.Comment: 14 pages, 5 figures. Main text plus one general supplementary material and one basic introduction to the topic. Published versio

    Ricci Collineations of the Bianchi Type II, VIII, and IX Space-times

    Get PDF
    Ricci and contracted Ricci collineations of the Bianchi type II, VIII, and IX space-times, associated with the vector fields of the form (i) one component of ξa(xb)\xi^a(x^b) is different from zero and (ii) two components of ξa(xb)\xi^a(x^b) are different from zero, for a,b=1,2,3,4a,b=1,2,3,4, are presented. In subcase (i.b), which is ξa=(0,ξ2(xa),0,0)\xi^a= (0,\xi^2(x^a),0,0), some known solutions are found, and in subcase (i.d), which is ξa=(0,0,0,ξ4(xa))\xi^a =(0,0,0,\xi^4(x^a)), choosing S(t)=const.×R(t)S(t)=const.\times R(t), the Bianchi type II, VIII, and IX space-times is reduced to the Robertson-Walker metric.Comment: 12 Pages, LaTeX, 1 Table, no figure

    Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles

    Get PDF
    The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa. At 25 °C the enzyme had a half-life of 25 h. The Michaelis–Menten constants K(m) and v(max) for the enzyme were 0.624 mM and 5.12 μmol/min/mg, respectively, using 3-cyanopyridine as the substrate. The enzyme-containing freely-suspended bacterial cells and the cells immobilized within alginate beads were evaluated for converting the various nitriles to amides. In a packed bed reactor, alginate beads (2 % alginate; 3 mm bead diameter) containing 200 mg/mL of cells, achieved a conversion of >90 % for benzonitrile and 4-cyanopyridine in 38 h (25 °C, pH 7.0) at a feed substrate concentration of 100 mM. The beads could be reused for up to six reaction cycles

    Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas

    Get PDF
    The hard x-ray emission in the energy range of 30-300 keV from copper plasmas produced by 100 fs, 806 nm laser pulses at intensities in the range of 10151016^{15}-10^{16} W cm2^{-2} is investigated. We demonstrate that surface roughness of the targets overrides the role of polarization state in the coupling of light to the plasma. We further show that surface roughness has a significant role in enhancing the x-ray emission in the above mentioned energy range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
    corecore