14,621 research outputs found
Phase space dynamics of overdamped quantum systems
The phase space dynamics of dissipative quantum systems in strongly condensed
phase is considered. Based on the exact path integral approach it is shown that
the Wigner transform of the reduced density matrix obeys a time evolution
equation of Fokker-Planck type valid from high down to very low temperatures.
The effect of quantum fluctuations is discussed and the accuracy of these
findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let
Xylanase Production by Penicillium citrinum in Laboratory-scale Stirred Tank Reactor
Xylanase constitutes an important class of hydrolases, and is used in numerous industrial applications. The aim of the present work was to study the production of xylanase from Penicillium citrinum MTCC 9620 in a 5 L stirred tank bioreactor. Effect of various process parameters; pH, temperature, aeration, agitation rates, substrate concentration, and, dissolved oxygen (DO) concentration on xylanase production were studied. Combination of all the optimized parameters resulted in 2.5 times higher enzyme activity as compared to the shake flask fermentation after 96 h. Effect of varying agitation and aeration on the volumetric mass transfer coefficient (KLa) was determined. It revealed that KLa is influenced by both aeration and agitation. Growth kinetics of P. citrinum MTCC 9620 in bioreactor was studied using Monod, Moser, Contois and Edward equation. Based on R2, SE and pattern of residuals, the microbial growth kinetics of P. citrinum MTCC 9620 was effectively represented by Moser equation
Optimization of Xylanase Production from Penicillium citrinum in Solid-State Fermentation
Solid-state fermentation of sugarcane bagasse by Penicillium citrinum MTCC 2553 was optimized to maximize the yield of xylanase. Preliminary experiments carried out with various lignocellulosic materials revealed sugarcane bagasse to be the most suitable substrate for producing xylanase. Response surface methodology was used in the optimization. Xylanase activity was maximized in a 5-day batch fermentation carried out under the following conditions: a substrate-to-moisture ratio of 1:5 by mass, an initial pH of 7.0 and an incubation temperature of 30 °C. Under the optimal conditions, the final activity of xylanase was 1645 U g–1 of dry substrate. Xylanase was recovered from an extract of the fermented solids by ammonium sulfate precipitation. The crude enzyme was further purified by dialysis. The activity of the enzyme was enhanced in the presence of Na+, Mg2+, Mn2+, Fe3+, Zn2+, Cu2+, Co2+ and Tween 80. The enzyme was inhibited by Hg2+, Ca2+ and the chelating agent ethylene diamine tetra acetic acid (EDTA)
Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice
We present detailed analytic calculations of finite-volume energy spectra,
mean field theory, as well as a systematic low-energy effective field theory
for the square lattice quantum dimer model. The analytic considerations explain
why a string connecting two external static charges in the confining columnar
phase fractionalizes into eight distinct strands with electric flux
. An emergent approximate spontaneously broken symmetry
gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like
excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far
beyond this point. The Goldstone physics is captured by a systematic low-energy
effective field theory. We determine its low-energy parameters by matching the
analytic effective field theory with exact diagonalization results and Monte
Carlo data. This confirms that the model exists in the columnar (and not in a
plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure
Stress corrosion cracking of copper-manganese alloys-effect of some chemical variables
OCCURRENCE of stress corrosion cracking in binary copper-manganese alloys in the presence of ammonia has been first reported by Lahiri1 where it has also been observed that Mattsson's solution2 comprising CuSO4, 5H2O and (NH4)2SO4 and ammonia, a very aggressive medium for stress corrosion
cracking of brass, is very much effective in producing
ready cracking in copper-manganese alloys. Coppermanganese
system provides a wide range of solid solution; in this respect it is comparable to the copperzinc system, the stress corrosion studies of which have been carried out extensively. A few recent papers3'4'5 deal with the elect-rochemical aspects of stress corrosion cracking of alpha brass in Mattsson's solution. In this context it will be of interest to study the behaviour of homogeneous copper-manganese alloys under the variable conditions of Matt-sson's solution to get an insight into the mechanism of stress corrosion cracking
Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we
construct a quantum simulator for a U(1) gauge theory coupled to fermionic
matter. The construction is based on quantum links which realize continuous
gauge symmetry with discrete quantum variables. At low energies, quantum link
models with staggered fermions emerge from a Hubbard-type model which can be
quantum simulated. This allows us to investigate string breaking as well as the
real-time evolution after a quench in gauge theories, which are inaccessible to
classical simulation methods.Comment: 14 pages, 5 figures. Main text plus one general supplementary
material and one basic introduction to the topic. Published versio
Ricci Collineations of the Bianchi Type II, VIII, and IX Space-times
Ricci and contracted Ricci collineations of the Bianchi type II, VIII, and IX
space-times, associated with the vector fields of the form (i) one component of
is different from zero and (ii) two components of are
different from zero, for , are presented. In subcase (i.b), which
is , some known solutions are found, and in subcase
(i.d), which is , choosing ,
the Bianchi type II, VIII, and IX space-times is reduced to the
Robertson-Walker metric.Comment: 12 Pages, LaTeX, 1 Table, no figure
Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles
The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa. At 25 °C the enzyme had a half-life of 25 h. The Michaelis–Menten constants K(m) and v(max) for the enzyme were 0.624 mM and 5.12 μmol/min/mg, respectively, using 3-cyanopyridine as the substrate. The enzyme-containing freely-suspended bacterial cells and the cells immobilized within alginate beads were evaluated for converting the various nitriles to amides. In a packed bed reactor, alginate beads (2 % alginate; 3 mm bead diameter) containing 200 mg/mL of cells, achieved a conversion of >90 % for benzonitrile and 4-cyanopyridine in 38 h (25 °C, pH 7.0) at a feed substrate concentration of 100 mM. The beads could be reused for up to six reaction cycles
Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas
The hard x-ray emission in the energy range of 30-300 keV from copper plasmas
produced by 100 fs, 806 nm laser pulses at intensities in the range of
10 W cm is investigated. We demonstrate that surface
roughness of the targets overrides the role of polarization state in the
coupling of light to the plasma. We further show that surface roughness has a
significant role in enhancing the x-ray emission in the above mentioned energy
range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
- …