3 research outputs found
Investigation of quasi-periodic variations in hard X-rays of solar flares. II. Further investigation of oscillating magnetic traps
In our recent paper (Solar Physics 261, 233) we investigated quasi-periodic
oscillations of hard X-rays during impulsive phase of solar flares. We have
come to conclusion that they are caused by magnetosonic oscillations of
magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the
present paper we investigate four flares which show clear quasi-periodic
sequences of HXR pulses. We also describe our phenomenological model of
oscillating magnetic traps to show that it can explain observed properties of
HXR oscillations. Main results are the following: 1. We have found that
low-amplitude quasi-periodic oscillations occur before impulsive phase of some
flares. 2. We have found that quasi-period of the oscillations can change in
some flares. We interpret this as being due to changes of the length of
oscillating magnetic traps. 3. During impulsive phase a significant part of the
energy of accelerated (non-thermal) electrons is deposited within the HXR
loop-top source. 4. Our analysis suggests that quick development of impulsive
phase is due to feedback between pulses of the pressure of accelerated
electrons and the amplitude of magnetic-trap oscillation. 5. We have also
determined electron number density and magnetic filed strength for HXR loop-top
sources of several flares. The values fall within the limits of cm, gauss.Comment: 18 pages, 14 figures, submitted to Solar Physic