760 research outputs found

    Mass Corrections to Flavor-Changing Fermion-Graviton Vertices in the Standard Model

    Full text link
    In a previous study, the flavor-changing fermion-graviton interactions have been analyzed in the framework of the standard model, where analytical results for the relevant form factors were obtained at the leading order in the external fermion masses. These interactions arise at one-loop level by the charged electroweak corrections to the fermion-graviton vertex, when the off-diagonal flavor transitions in the corresponding charged weak currents are taken into account. Due to the conservation of the energy-momentum tensor, the corresponding form factors turn out to be finite and gauge invariant when external fermions are on-shell. Here we extend this previous analysis by including the exact dependence on the external fermion masses. Complete analytical results are provided for all the relevant form factors to the flavor-changing fermion-graviton transitions.Comment: 19 pages, 9 figure

    A Conceptual Model of Investor Behavior

    Get PDF
    Based on a survey of behavioral finance literature, this paper presents a descriptive model of individual investor behavior in which investment decisions are seen as an iterative process of interactions between the investor and the investment environment. This investment process is influenced by a number of interdependent variables and driven by dual mental systems, the interplay of which contributes to boundedly rational behavior where investors use various heuristics and may exhibit behavioral biases. In the modeling tradition of cognitive science and intelligent systems, the investor is seen as a learning, adapting, and evolving entity that perceives the environment, processes information, acts upon it, and updates his or her internal states. This conceptual model can be used to build stylized representations of (classes of) individual investors, and further studied using the paradigm of agent-based artificial financial markets. By allowing us to implement individual investor behavior, to choose various market mechanisms, and to analyze the obtained asset prices, agent-based models can bridge the gap between the micro level of individual investor behavior and the macro level of aggregate market phenomena. It has been recognized, yet not fully explored, that these models could be used as a tool to generate or test various behavioral hypothesis

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR

    Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    Full text link
    Wind turbines operate in the atmospheric boundary layer, where they are exposed to the turbulent atmospheric flows. As the response time of wind turbine is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. Consequently, basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. We report on basic research results concerning the small-scale intermittent properties of atmospheric flows and their impact on the wind energy conversion process. The analysis of wind data shows strongly intermittent statistics of wind fluctuations. To achieve numerical modeling a data-driven superposition model is proposed. For the experimental reproduction and adjustment of intermittent flows a so-called active grid setup is presented. Its ability is shown to generate reproducible properties of atmospheric flows on the smaller scales of the laboratory conditions of a wind tunnel. As an application example the response dynamics of different anemometer types are tested. To achieve a proper understanding of the impact of intermittent turbulent inflow properties on wind turbines we present methods of numerical and stochastic modeling, and compare the results to measurement data. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201
    • …
    corecore