13 research outputs found

    Čvrsta disperzija meloksikama: faktorijalno dizajnirani dozirani pripravak za gerijatrijsku populaciju

    Get PDF
    The objective of the present work was to improve the dissolution properties of the poorly water-soluble drug meloxicam by preparing solid dispersions with hydroxyethylcellulose (HEC), mannitol and polyethylene glycol (PEG) 4000 and to develop a dosage form for geriatric population. Differential scanning calorimetry, X–ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to investigate the solid-state physical structure of the prepared solid dispersions. Higher in vitro dissolution of solid dispersions was recorded compared to their corresponding physical mixtures and the pure drug. PEG 4000 in 1:9 drug to carrier ratio exhibited the highest drug release (100.2%), followed by mannitol (98.2%) and HEC (89.5%) in the same ratio. Meloxicam-PEG 4000 solid dispersion was formulated into suspension and optimization was carried out by 23 factorial design. Formulations containing higher levels of methyl cellulose and higher levels of either sodium citrate or Tween 80 exhibited the highest drug release.Cilj rada bio je poboljšati topljivost meloksikama u vodi pripravom čvrstih disperzija s hidroksietilcelulozom (HEC), manitolom i polietilen glikolom 4000 (PEG 4000) te razviti dozirani pripravaka za gerijatrijsku populaciju. Za ispitivanje fizičke strukture pripravljenih čvrstih disperzija korištene su diferencijalna pretražna kalorimetrija, difraktometrija rentgentskim zrakama, FTIR i pretražna elektronska mikroskopija. Čvrste disperzije su u in vitro uvjetima pokazale bolju topljivost u odnosu na fizičku smjesu i čistu ljekovitu tvar. Najbolje oslobađanje lijeka (100,2%). postignuto je iz disperzija s PEG 4000 (omjer ljekovite tvari i nosača 1:9). Slijede manitol (98,2%) i HEC (89,5%) (isti omjer meloksikama i polimera). Čvrsta disperzija meloksikama s PEG 4000 prevedena je u suspenziju te optimirana 23 faktorijalnim dizajnom. Najbolje oslobađanje ljekovite tvari postignuto je iz pripravaka koji sadrže veći udio etilceluloze i natrijevog citrata, odnosno Tween 80

    RECENT UPDATE ON LIPOSOME-BASED DRUG DELIVERY SYSTEM

    Get PDF
    In this review article, liposome a novel drug delivery has been discussed, which is one among the various drug delivery system used to target the drug to a particular tissue. As the structural similarity between lipid bilayer and cell membrane, the liposome can easily penetrate and produce an effective delivery of the drug to such that a free drug would not able to penetrate. Some other drug delivery systems include niosomes, microparticles, resealed erythrocytes, pharmacosomes, etc. The term liposome meaning lipid body. Liposomes can also be able to encapsulate in both hydrophilic and hydrophobic materials and are utilized as drug carriers in drug delivery. This technology is very useful for the treatment of certain diseases. In this review, the preparation, evaluation and the applications of the liposomal drug delivery system for targeting various diseases are elaborately presented

    Porous Bioactive Glass Scaffolds for Local Drug Delivery in Osteomyelitis: Development and In Vitro Characterization

    No full text
    A new bioactive glass-based scaffold was developed for local delivery of drugs in case of osteomyelitis. Bioactive glass having a new composition was prepared and converted into porous scaffold. The bioactivity of the resulting scaffold was examined by in vitro acellular method. The scaffolds were loaded with two different drugs, an antibacterial or antifungal drug. The effects of the size of the scaffold, drug concentration, and dissolution medium on drug release were studied. The scaffolds were further coated with a degradable natural polymer, chitosan, to further control the drug release. Both the glass and scaffold were bioactive. The scaffolds released both the drugs for 6 weeks, in vitro. The results indicated that the bigger the size and the higher the drug concentration, the better was the release profile. The scaffolds appeared to be suitable for local delivery of the drugs in cases of osteomyelitis
    corecore