2 research outputs found

    What Caused the UK's Largest Common Dolphin (Delphinus delphis) Mass Stranding Event?

    Get PDF
    On 9 June 2008, the UK's largest mass stranding event (MSE) of short-beaked common dolphins (Delphinus delphis) occurred in Falmouth Bay, Cornwall. At least 26 dolphins died, and a similar number was refloated/herded back to sea. On necropsy, all dolphins were in good nutritive status with empty stomachs and no evidence of known infectious disease or acute physical injury. Auditory tissues were grossly normal (26/26) but had microscopic haemorrhages (5/5) and mild otitis media (1/5) in the freshest cases. Five lactating adult dolphins, one immature male, and one immature female tested were free of harmful algal toxins and had low chemical pollutant levels. Pathological evidence of mud/seawater inhalation (11/26), local tide cycle, and the relative lack of renal myoglobinuria (26/26) suggested MSE onset on a rising tide between 06∶30 and 08∶21 hrs (9 June). Potential causes excluded or considered highly unlikely included infectious disease, gas/fat embolism, boat strike, by-catch, predator attack, foraging unusually close to shore, chemical or algal toxin exposure, abnormal weather/climatic conditions, and high-intensity acoustic inputs from seismic airgun arrays or natural sources (e.g., earthquakes). International naval exercises did occur in close proximity to the MSE with the most intense part of the exercises (including mid-frequency sonars) occurring four days before the MSE and resuming with helicopter exercises on the morning of the MSE. The MSE may therefore have been a “two-stage process” where a group of normally pelagic dolphins entered Falmouth Bay and, after 3–4 days in/around the Bay, a second acoustic/disturbance event occurred causing them to strand en masse. This spatial and temporal association with the MSE, previous associations between naval activities and cetacean MSEs, and an absence of other identifiable factors known to cause cetacean MSEs, indicates naval activity to be the most probable cause of the Falmouth Bay MSE

    Biochemical and pharmacological role of A1adenosine receptors and their modulation as novel therapeutic strategy

    No full text
    Adenosine, the purine nucleoside, mediates its effects through activation of four G-protein coupled adenosine receptors (ARs) named as A1, A2A, A2Band A3. In particular, A1ARs are distributed through the body, primarily inhibitory in the regulation of adenylyl cyclase activity and able to reduce the cyclic AMP levels. Considerable advances have been made in the pharmacological and molecular characterization of A1ARs, which had been proposed as targets for the discovery and drug design of antagonists, agonists and allosteric enhancers. Several lines of evidence indicate that adenosine interacting with A1ARs may be an endogenous protective agent in the human body since it prevents the damage caused by various pathological conditions, such as in ischemia/hypoxia, epileptic seizures, excitotoxic neuronal injury and cardiac arrhythmias in cardiovascular system. It has also been reported that one of the most promising targets for the development of new anxiolytic drugs could be A1ARs, and that their activation may reduce pain signaling in the spinal cord. A1AR antagonists induce diuresis and natriuresis in various experimental models, mediating the inhibition of A1ARs in the proximal tubule which is primarily responsible for reabsorption and fluid uptake. In addition, the results of various studies indicate that adenosine is present within pancreatic islets and is implicated through A1ARs in the regulation of insulin secretion and in glucose concentrations. In the present paper it will become apparent that A1ARs could be implicated in the pharmacological treatment of several pathologies with an important influence on human health
    corecore