6 research outputs found

    Diagnostic accuracy of a three-protein signature in women with suspicious breast lesions: a multicenter prospective trial

    Get PDF
    Background Mammography screening has been proven to detect breast cancer at an early stage and reduce mortality; however, it has low accuracy in young women or women with dense breasts. Blood-based diagnostic tools may overcome the limitations of mammography. This study assessed the diagnostic performance of a three-protein signature in patients with suspicious breast lesions. Findings This trial (MAST; KCT0004847) was a prospective multicenter observational trial. Three-protein signature values were obtained using serum and plasma from women with suspicious lesions for breast malignancy before tumor biopsy. Additionally, blood samples from women who underwent clear or benign mammography were collected for the assays. Among 642 participants, the sensitivity, specificity, and overall accuracy values of the three-protein signature were 74.4%, 66.9%, and 70.6%, respectively, and the concordance index was 0.698 (95% CI 0.656, 0.739). The diagnostic performance was not affected by the demographic features, clinicopathologic characteristics, and co-morbidities of the participants. Conclusions The present trial showed an accuracy of 70.6% for the three-protein signature. Considering the value of blood-based biomarkers for the early detection of breast malignancies, further evaluation of this proteomic assay is warranted in larger, population-level trials. This Multi-protein Assessment using Serum to deTermine breast lesion malignancy (MAST) was registered at the Clinical Research Information Service of Korea with the identification number of KCT0004847 (https://cris.nih.go.kr).This study was supported by the Bertis Inc. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Rubber Clay Nanocomposites

    Get PDF
    The use of nanofillers allows the development of nanocomposites with improved properties and novel applications. The technological goal is possible due to the new compounding method that allows a particle dispersion in the nanometer scale increasing the specific surface area.Fil: Cova SĂĄnchez, Mariajose. Instituto Nacional de TecnologĂ­a Industrial. Instituto Nacional de TecnologĂ­a Industrial - Caucho; Argentina. Universidad Nacional de San MartĂ­n. Instituto de InvestigaciĂłn e IngenierĂ­a Ambiental. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de InvestigaciĂłn e IngenierĂ­a Ambiental; ArgentinaFil: Bacigalupe, Alejandro. Universidad Nacional de San MartĂ­n. Instituto de InvestigaciĂłn e IngenierĂ­a Ambiental. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de InvestigaciĂłn e IngenierĂ­a Ambiental; Argentina. Instituto Nacional de TecnologĂ­a Industrial. Instituto Nacional de TecnologĂ­a Industrial - Caucho; ArgentinaFil: Escobar, Mariano Martin. Instituto Nacional de TecnologĂ­a Industrial. Instituto Nacional de TecnologĂ­a Industrial - Caucho; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Mansilla, Marcela Angela. Instituto Nacional de TecnologĂ­a Industrial. Instituto Nacional de TecnologĂ­a Industrial - Caucho; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin
    corecore