433 research outputs found

    The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice

    Get PDF
    Modulation of tumour cell growth by tumour-infiltrating leucocytes is of high importance for the biological behaviour of malignant neoplasms. In melanoma, tumour-associated macrophages (TAM) and tumour-infiltrating lymphocytes (TIL) are of particular interest as inhibitors or enhancers of cell growth. Recruitment of leucocytes from the peripheral blood into the tumour site is mediated predominantly by chemotaxins, particularly by the group of chemokines

    A left temporal lobe impairment of auditory information processing in schizophrenia: an event-related potential study

    Get PDF
    Introduction: A measure of auditory prepulse inhibition (PPI) or sensory gating is the reduction of the scalp-recorded P1 event-related potential (ERP) after a sound that is preceded by 100-300 ms by a click as prepulse. This measure of sensory gating was adapted to study the effect of a prepulse on processing tones that were part of a "Go/no-go" discrimination. Methods: ERPs were recorded at right and left frontal and temporal sites on the scalp of groups of patients with schizophrenia (SCH, 8), obsessive compulsive disorder (OCD, 10) and healthy controls (CON, 19). Results: a) Both patient groups responded slower and showed more errors of omission than controls. b) A prepulse presented 100 ms (but not at 500 ms) before either tone reduced the P1 or P50 ERP amplitude on healthy controls, but showed a right temporal shift in the SCH patients. c) If the tone was the 'no-go' stimulus in the tone discrimination the prepulse reduced the N1 amplitude in both normal controls and SCH patients. This N100 amplitude was similar in records from over the left and right hemisphere of controls but was shifted to right temporal sites in the SCH group. d) OCD patients showed a relative predominance of the left hemisphere in the gating of frontal P1, N100 and P300 components, but early gating was not significantly impaired in this group. Conclusions: These results show a reduction of a PPI-like effect on early processing (e.g. P50/P1) that is more marked in the left hemisphere of SCH patients, and may affect channel selection for processing information about task-relevant sounds (e.g. N100

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    Get PDF
    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways

    Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The generation of saccades is influenced by the level of "preparatory set activity" in cortical oculomotor areas. This preparatory activity can be examined using the gap-paradigm in which a temporal gap is introduced between the disappearance of a central fixation target and the appearance of an eccentric target.</p> <p>Methods</p> <p>Ten healthy subjects made horizontal pro- or antisaccades in response to lateralized cues after a gap period of 200 ms. Single-pulse transcranial magnetic stimulation (TMS) was applied to the dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF), or supplementary eye field (SEF) of the right hemisphere 100 or 200 ms after the disappearance of the fixation point. Saccade latencies were measured to probe the disruptive effect of TMS on saccade preparation. In six individuals, we gave realistic sham TMS during the gap period to mimic auditory and somatosensory stimulation without stimulating the cortex.</p> <p>Results</p> <p>TMS to DLPFC, FEF, or SEF increased the latencies of contraversive pro- and antisaccades. This TMS-induced delay of saccade initiation was particularly evident in conditions with a relatively high level of preparatory set activity: The increase in saccade latency was more pronounced at the end of the gap period and when participants prepared for prosaccades rather than antisaccades. Although the "lesion effect" of TMS was stronger with prefrontal TMS, TMS to FEF or SEF also interfered with the initiation of saccades. The delay in saccade onset induced by real TMS was not caused by non-specific effects because sham stimulation shortened the latencies of contra- and ipsiversive anti-saccades, presumably due to intersensory facilitation.</p> <p>Conclusion</p> <p>Our results are compatible with the view that the "preparatory set" for contraversive saccades is represented in a distributed cortical network, including the contralateral DLPFC, FEF and SEF.</p

    Murine Gamma Herpesvirus 68 Hijacks MAVS and IKKβ to Abrogate NFκB Activation and Antiviral Cytokine Production

    Get PDF
    Upon viral infection, mitochondrial antiviral signaling (MAVS) protein serves as a key adaptor to promote cytokine production. We report here that murine gamma herpesvirus 68 (γHV68), a model virus for oncogenic human gamma herpesviruses, subverts cytokine production via the MAVS adaptor. During early infection, γHV68 hijacks MAVS and IKKβ to induce the site-specific phosphorylation of RelA, a crucial subunit of the transcriptionally active NFκB dimer, which primes RelA for the proteasome-mediated degradation. As such, γHV68 efficiently abrogated NFκB activation and cytokine gene expression. Conversely, uncoupling RelA degradation from γHV68 infection promoted NFκB activation and elevated cytokine production. Loss of MAVS increased cytokine production and immune cell infiltration in the lungs of γHV68-infected mice. Moreover, exogenous expression of the phosphorylation- and degradation-resistant RelA variant restored γHV68-induced cytokine production. Our findings uncover an intricate strategy whereby signaling via the upstream MAVS adaptor is intercepted by a pathogen to nullify the immediate downstream effector, RelA, of the innate immune pathway

    CCL5 regulation of mucosal chlamydial immunity and infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following genital chlamydial infection, an early T helper type 1 (Th1)-associated immune response precedes the activation and recruitment of specific Th1 cells bearing distinct chemokine receptors, subsequently leading to the clearance of <it>Chlamydia</it>. We have shown that CCR5, a receptor for CCL5, is crucial for protective chlamydial immunity. Our laboratory and others have also demonstrated that CCL5 deficiencies found in man and animals can increase the susceptibility and progression of infectious diseases by modulating mucosal immunity. These findings suggest the CCR5-CCL5 axis is necessary for optimal chlamydial immunity. We hypothesized CCL5 is required for protective humoral and cellular immunity against <it>Chlamydia</it>.</p> <p>Results</p> <p>The present study revealed that CCR5 and CCL5 mRNAs are elevated in the spleen, iliac lymph nodes (ILNs), and genital mucosa following <it>Chlamydia muriduram </it>challenge. Antibody (Ab)-mediated inhibition of CCL5 during genital chlamydial infection suppressed humoral and Th1 > Th2 cellular responses by splenic-, ILN-, and genital mucosa-derived lymphocytes. Antigen (Ag)-specific proliferative responses of CD4<sup>+ </sup>T cells from spleen, ILNs, and genital organs also declined after CCL5 inhibition.</p> <p>Conclusion</p> <p>The suppression of these responses correlated with delayed clearance of <it>C. muriduram</it>, which indicate chlamydial immunity is mediated by Th1 immune responses driven in part by CCL5. Taken together with other studies, the data show that CCL5 mediates the temporal recruitment and activation of leukocytes to mitigate chlamydial infection through enhancing adaptive mucosal humoral and cellular immunity.</p

    A Role for the Chemokine RANTES in Regulating CD8 T Cell Responses during Chronic Viral Infection

    Get PDF
    RANTES (CCL5) is a chemokine expressed by many hematopoietic and non-hematopoietic cell types that plays an important role in homing and migration of effector and memory T cells during acute infections. The RANTES receptor, CCR5, is a major target of anti-HIV drugs based on blocking viral entry. However, defects in RANTES or RANTES receptors including CCR5 can compromise immunity to acute infections in animal models and lead to more severe disease in humans infected with west Nile virus (WNV). In contrast, the role of the RANTES pathway in regulating T cell responses and immunity during chronic infection remains unclear. In this study, we demonstrate a crucial role for RANTES in the control of systemic chronic LCMV infection. In RANTES−/− mice, virus-specific CD8 T cells had poor cytokine production. These RANTES−/− CD8 T cells also expressed higher amounts of inhibitory receptors consistent with more severe exhaustion. Moreover, the cytotoxic ability of CD8 T cells from RANTES−/− mice was reduced. Consequently, viral load was higher in the absence of RANTES. The dysfunction of T cells in the absence of RANTES was as severe as CD8 T cell responses generated in the absence of CD4 T cell help. Our results demonstrate an important role for RANTES in sustaining CD8 T cell responses during a systemic chronic viral infection

    Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women

    Get PDF
    IMPORTANCE: A recently published study of national data by McGrath et al in 2014 showed increased risk of schizophrenia (SCZ) in offspring associated with both early and delayed parental age, consistent with a U-shaped relationship. However, it remains unclear if the risk to the child is due to psychosocial factors associated with parental age or if those at higher risk for SCZ tend to have children at an earlier or later age. OBJECTIVE: To determine if there is a genetic association between SCZ and age at first birth (AFB) using genetically informative but independently ascertained data sets. DESIGN, SETTING, AND PARTICIPANTS: This investigation used multiple independent genome-wide association study data sets. The SCZ sample comprised 18 957 SCZ cases and 22 673 controls in a genome-wide association study from the second phase of the Psychiatric Genomics Consortium, and the AFB sample comprised 12 247 genotyped women measured for AFB from the following 4 community cohorts: Estonia (Estonian Genome Center Biobank, University of Tartu), the Netherlands (LifeLines Cohort Study), Sweden (Swedish Twin Registry), and the United Kingdom (TwinsUK). Schizophrenia genetic risk for each woman in the AFB community sample was estimated using genetic effects inferred from the SCZ genome-wide association study. MAIN OUTCOMES AND MEASURES: We tested if SCZ genetic risk was a significant predictor of response variables based on published polynomial functions that described the relationship between maternal age and SCZ risk in offspring in Denmark. We substituted AFB for maternal age in these functions, one of which was corrected for the age of the father, and found that the fit was superior for the model without adjustment for the father's age. RESULTS: We observed a U-shaped relationship between SCZ risk and AFB in the community cohorts, consistent with the previously reported relationship between SCZ risk in offspring and maternal age when not adjusted for the age of the father. We confirmed that SCZ risk profile scores significantly predicted the response variables (coefficient of determination R2 = 1.1E-03, P = 4.1E-04), reflecting the published relationship between maternal age and SCZ risk in offspring by McGrath et al in 2014. CONCLUSIONS AND RELEVANCE: This study provides evidence for a significant overlap between genetic factors associated with risk of SCZ and genetic factors associated with AFB. It has been reported that SCZ risk associated with increased maternal age is explained by the age of the father and that de novo mutations that occur more frequently in the germline of older men are the underlying causal mechanism. This explanation may need to be revised if, as suggested herein and if replicated in future studies, there is also increased genetic risk of SCZ in older mothers
    corecore