18,703 research outputs found
Observation of sub-natural linewidths for cold atoms in a magneto-optic trap
We have studied the absorption of a weak probe beam through cold rubidium
atoms in a magneto-optic trap. The absorption spectrum shows two peaks with the
smaller peak having linewidth as small as 28% of the natural linewidth. The
modification happens because the laser beams used for trapping also drive the
atoms coherently between the ground and excited states. This creates
``dressed'' states whose energies are shifted depending on the strength of the
drive. Linewidth narrowing occurs due to quantum coherence between the dressed
states. The separation of the states increases with laser intensity and
detuning, as expected from this model.Comment: 8 pages, 4 figure
Theory of a Slow-Light Catastrophe
In diffraction catastrophes such as the rainbow the wave nature of light
resolves ray singularities and draws delicate interference patterns. In quantum
catastrophes such as the black hole the quantum nature of light resolves wave
singularities and creates characteristic quantum effects related to Hawking
radiation. The paper describes the theory behind a recent proposal [U.
Leonhardt, arXiv:physics/0111058, Nature (in press)] to generate a quantum
catastrophe of slow light.Comment: Physical Review A (in press
Spatial evolution of short pulses under coherent population trapping
Spatial and temporal evolution is studied of two powerful short laser pulses
having different wavelengths and interacting with a dense three-level
Lambda-type optical medium under coherent population trapping. A general case
of unequal oscillator strengths of the transitions is considered. Durations of
the probe pulse and the coupling pulse () are assumed to be
shorter than any of the relevant atomic relaxation times. We propose analytical
and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger
equations and reduced wave equations in the adiabatic limit with the account of
the first non-adiabatic correction. The adiabaticity criterion is also
discussed with the account of the pulse propagation. The dynamics of
propagation is found to be strongly dependent on the ratio of the transition
oscillator strengths. It is shown that envelopes of the pulses slightly change
throughout the medium length at the initial stage of propagation. This distance
can be large compared to the one-photon resonant absorption length. Eventually,
the probe pulse is completely reemitted into the coupling pulse during
propagation. The effect of localization of the atomic coherence has been
observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84},
5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review
Fermi Surface Evolution, Pseudo Gap and Stagger Gauge Field Fluctuation in Underdoped Cuprates
In the context of t-J model we show that in underdoped regime,beside the
usual long wave length gauge field fluctuation, an additional low energy
fluctuation, staggered gauge field fluctuation plays a crucial role in the
evolution of Fermi surface(FS) as well as the line shape of spectral function
for the cuprates. By including the staggered gauge field fluctuation we
calculate the spectral function of the electrons by RPA(random phase
approximation). The line shape of the spectral function near is very
broad in underdoped case and is quite sharp in overdoped case. For the spectral
function near , the quasiparticle peaks are always very sharp
in both underdoped and overdoped case. The temperature dependence of the
spectral function is also discussed in our present calculation. These results
fit well with the recent ARPES experiments. We also calculate the FS crossover
from a small four segment like FS to a large continuous FS. The reason of such
kind of FS crossover is ascribed to the staggered gauge field fluctuation which
is strong in underdoped regime and becomes much weaker in overdoped regime. The
pseudo gap extracted from the ARPES data can be also interpreted by the
calculation.Comment: 4 pages,6 eps figures include
Probing Noise in Flux Qubits via Macroscopic Resonant Tunneling
Macroscopic resonant tunneling between the two lowest lying states of a
bistable RF-SQUID is used to characterize noise in a flux qubit. Measurements
of the incoherent decay rate as a function of flux bias revealed a Gaussian
shaped profile that is not peaked at the resonance point, but is shifted to a
bias at which the initial well is higher than the target well. The r.m.s.
amplitude of the noise, which is proportional to the decoherence rate 1/T_2^*,
was observed to be weakly dependent on temperature below 70 mK. Analysis of
these results indicates that the dominant source of low frequency (1/f) flux
noise in this device is a quantum mechanical environment in thermal
equilibrium.Comment: 4 pages 4 figure
Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity
A moving dielectric medium acts as an effective gravitational field on light.
One can use media with extremely low group velocities [Lene Vestergaard Hau et
al., Nature 397, 594 (1999)] to create dielectric analogs of astronomical
effects on Earth. In particular, a vortex flow imprints a long-ranging
topological effect on incident light and can behave like an optical black hole.Comment: Physical Review Letters (accepted
Theoretical Analysis of the "Double-q" Magnetic Structure of CeAl2
A model involving competing short-range isotropic Heisenberg interactions is
developed to explain the "double-q" magnetic structure of CeAl. For
suitably chosen interactions, terms in the Landau expansion quadratic in the
order parameters explain the condensation of incommensurate order at
wavevectors in the star of (1/2 , 1/2 , 1/2), where
is the cubic lattice constant. We show that the fourth order terms in the
Landau expansion lead to the formation of the so-called "double-q" magnetic
structure in which long-range order develops simultaneously at two
symmetry-related wavevectors, in striking agreement with the magnetic structure
determinations. Based on the value of the ordering temperature and of the
Curie-Weiss of the susceptibility, we estimate that the nearest
neighbor interaction is ferromagnetic, with K and the
next-nearest neighbor interaction is antiferromagnetic with K.
We also briefly comment on the analogous phenomenon seen in the similar system
TmS.Comment: 22 pages, 6 figure
Strong-coupling approach for strongly correlated electron systems
A perturbation theory scheme in terms of electron hopping, which is based on
the Wick theorem for Hubbard operators, is developed. Diagrammatic series
contain single-site vertices connected by hopping lines and it is shown that
for each vertex the problem splits into the subspaces with ``vacuum states''
determined by the diagonal Hubbard operators and only excitations around these
vacuum states are allowed. The rules to construct diagrams are proposed. In the
limit of infinite spatial dimensions the total auxiliary single-site problem
exactly splits into subspaces that allows to build an analytical
thermodynamically consistent approach for a Hubbard model. Some analytical
results are given for the simple approximations when the two-pole
(alloy-analogy solution) and four-pole (Hartree-Fock approximation) structure
for Green's function is obtained. Two poles describe contribution from the
Fermi-liquid component, which is dominant for small electron and hole
concentrations (``overdoped case'' of high-'s), whereas other two describe
contribution from the non-Fermi liquid and are dominant close to half-filling
(``underdoped case'').Comment: 14 pages, revtex, feynmf, 5 EPS figures, two-column PRB style,
published in PR
Spin Driven Jahn-Teller Distortion in a Pyrochlore system
The ground-state properties of the spin-1 antiferromagnetic Heisenberg model
on the corner-sharing tetrahedra, pyrochlore lattice, is investigated. By
breaking up each spin into a pair of 1/2-spins, the problem is reduced to the
equivalent one of the spin-1/2 tetrahedral network in analogy with the valence
bond solid state in one dimension. The twofold degeneracy of the spin-singlets
of a tetrahedron is lifted by a Jahn-Teller mechanism, leading to a cubic to
tetragonal structural transition. It is proposed that the present mechanism is
responsible for the phase transition observed in the spin-1 spinel compounds
ZnVO and MgVO.Comment: 4 pages, 3 eps figures, REVTeX, to appear in Phys. Rev. Let
Constraints on non-Newtonian gravity from the Casimir force measurements between two crossed cylinders
Constraints on the Yukawa-type corrections to Newtonian gravitational law are
obtained resulting from the measurement of the Casimir force between two
crossed cylinders. The new constraints are stronger than those previously
derived in the interaction range between 1.5 nm and 11 nm. The maximal
strengthening in 300 times is achieved at 4.26 nm. Possible applications of the
obtained results to the elementary particle physics are discussed.Comment: An error in the text and in the figure had been corrected. To appear
in Phys. Rev.
- …