7 research outputs found

    Ecological Adaptation of Diverse Honey Bee (Apis mellifera) Populations

    Get PDF
    BACKGROUND: Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. RESULTS: Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. CONCLUSIONS: Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context

    Olfactory Interference during Inhibitory Backward Pairing in Honey Bees

    Get PDF
    Background: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/ memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or t

    Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann)

    No full text
    Nurses and foragers were observed around noon and around midnight during good and bad weather conditions. Foragers were very busy on sunny days with almost no periods of inactivity. More than 60% of the observation period around noon they spent outside the hive. When foragers were prevented from flight by the lack of light or by bad weather, they showed long periods that were defined as unproductive and trophallactic contacts were reduced. Nurses aged 7-9 days showed a less pronounced behavioural difference between day and night but were highly sensitive to weather alterations. They spent less than half of the time nursing the brood during bad weather conditions compared to good weather conditions, although there was no lack of pollen and honey in the colony. The same tendency was observed in other nurse-related activities. They were less often fed by other bees during days with bad weather conditions than during days with good weather conditions. These dramatic changes in behaviour could be observed even on the first day of rain. We presume that the decline of activity is at least partly caused by the diminishing flow of food within a colony
    corecore