105 research outputs found

    Hadronic ZγZ\gamma Production with QCD Corrections and Leptonic Decays

    Full text link
    The process ppZγ+X+γ+Xp p \to Z \gamma + X \to \ell^- \ell^+ \gamma + X, where \ell denotes a lepton, is calculated to order αs\alpha_s. Total and differential cross sections, with acceptance cuts imposed on the leptons and photon, are given for the Tevatron and LHC center of mass energies. In general, invariant mass and angular distributions are simply scaled up in magnitude by the QCD radiative corrections, whereas in transverse momentum distributions, the QCD radiative corrections increase with the transverse momentum.Comment: 16 pages + 9 figures, UCD-94-29. A postscript version and 9 postscript figures are available via anonymous ftp to UCDHEP.UCDAVIS.EDU in the directory [.ohnemus.ucd-94-29

    Hadron collider limits on anomalous WWγWW\gamma couplings

    Full text link
    A next-to-leading log calculation of the reactions pppp and ppW±γXp\overline{p}\rightarrow W^\pm\gamma X is presented including a tri-boson gauge coupling from non-Standard Model contributions. Two approaches are made for comparison. The first approach considers the tri-boson WWγWW\gamma coupling as being uniquely fixed by tree level unitarity at high energies to its Standard Model form and, consequently, suppresses the non-Standard Model contributions with form factors. The second approach is to ignore such considerations and calculate the contributions to non-Standard Model tri-boson gauge couplings without such suppressions. It is found that at Tevatron energies, the two approaches do not differ much in quantitative results, while at Large Hadron Collider (LHC) energies the two approaches give significantly different predictions for production rates. At the Tevatron and LHC, however, the sensitivity limits on the anomalous coupling of WWγWW\gamma are too weak to usefully constrain parameters in effective Lagrangian models.Comment: Revtex 23 pages + 8 figures, UIOWA-94-1

    Vector Boson Pair Production in Hadronic Collisions at Order αs\alpha_s: Lepton Correlations and Anomalous Couplings

    Full text link
    We present cross sections for production of electroweak vector boson pairs, WWWW, WZWZ and ZZZZ, in ppˉp\bar{p} and pppp collisions, at next-to-leading order in αs\alpha_s. We treat the leptonic decays of the bosons in the narrow-width approximation, but retain all spin information via decay angle correlations. We also include the effects of WWZWWZ and WWγWW\gamma anomalous couplings.Comment: 23 pages, 8 figures, 3 table

    Exclusive W^+ + photon production in proton-antiproton collisions II: results

    Full text link
    We present results for total cross sections, single and double differential distributions and correlations between pairs of outgoing particles in the reactions p + antip --> W^+ + photon and p + antip --> W^+ + photon + jet at sqrt(S)=1.8 TeV. Order alpha-strong QCD corrections and leading logarithm photon bremsstrahlung contributions are included in the MS-bar mass factorization scheme for three experimental scenarios: 1) 2-body inclusive production of W^+ and photon, 2) exclusive production of W^+, photon and 1 jet and 3) exclusive production of W^+ and photon with 0 jet. The latest CTEQ parton distribution functions, which fit the newly released HERA data, are used in our analysis. The dependence of our results on the mass factorization scale is used to place error bars on our predictions for the single differential distributions and correlations.Comment: 15 pages (LateX). 50 pages of postscript figures available via ftp anonymous from max.physics.sunysb.edu in the directory preprints/mendoza/EXCLUSIVE_W_GAMMA_II.dir (files named fig_*.ps) ITP-SB-93-80. ([email protected])([email protected]

    An update on vector boson pair production at hadron colliders

    Get PDF
    We present numerical results (including full one-loop QCD corrections) for the processes p p-bar and pp -> W+ W-, W+/- Z/gamma* and Z/gamma* Z/gamma* followed by the decay of the massive vector bosons into leptons. In addition to their intrinsic importance as tests of the standard model, these processes are also backgrounds to conjectured non-standard model processes. Because of the small cross sections at the Tevatron, full experimental control of these backgrounds will be hard to achieve. This accentuates the need for up-to-date theoretical information. A comparison is made with earlier work and cross section results are presented for p p-bar collisions at sqrt{s}=2 TeV and pp collisions at sqrt{s}=14 TeV. Practical examples of the use of our calculations are presented.Comment: 18 pages, 5 embedded figures, included extra reference [7

    ANOMALOUS GAUGE BOSON INTERACTIONS

    Get PDF
    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge boson self-interactions. If the energy scale of the new physics is 1\sim 1 TeV, these low energy anomalous couplings are expected to be no larger than O(102){\cal O}(10^{-2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures available on request. The complete paper, is available at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF Long Range Planning Stud

    Vector boson pair production at the LHC

    Get PDF
    We present phenomenological results for vector boson pair production at the LHC, obtained using the parton-level next-to-leading order program MCFM. We include the implementation of a new process in the code, pp -> \gamma\gamma, and important updates to existing processes. We incorporate fragmentation contributions in order to allow for the experimental isolation of photons in \gamma\gamma, W\gamma, and Z\gamma production and also account for gluon-gluon initial state contributions for all relevant processes. We present results for a variety of phenomenological scenarios, at the current operating energy of \sqrt{s} = 7 TeV and for the ultimate machine goal, \sqrt{s} = 14 TeV. We investigate the impact of our predictions on several important distributions that enter into searches for new physics at the LHC.Comment: 35 pages, 14 figure

    Exclusive W + photon production in proton-antiproton collisions I: general formalism

    Full text link
    We present a detailed computation of the fully exclusive cross section of p + antip --> W + photon + X with X = 0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order alpha-strong and photon bremsstrahlung contributions are discussed in the MS-bar mass factorization scheme. The resulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute single and double differential cross sections and correlations between outgoing pairs of particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file. ([email protected]) ([email protected]

    Amplitude Zeros in W±ZW^\pm Z Production

    Full text link
    We demonstrate that the Standard Model amplitude for f1fˉ2W±Zf_1 \bar f_2 \rightarrow W^\pm Z at the Born-level exhibits an approximate zero located at cosθ=(gf1+gf2)/(gf1gf2)\cos\theta = (g^{f_1}_{-} + g^{f_2}_{-}) / (g^{f_1}_{-} - g^{f_2}_{-}) at high energies, where the gfig^{f_i}_{-} (i=1,2i=1,2) are the left-handed couplings of the ZZ-boson to fermions and θ\theta is the center of mass scattering angle of the WW-boson. The approximate zero is the combined result of an exact zero in the dominant helicity amplitudes M(±,){\cal M}(\pm,\mp) and strong gauge cancelations in the remaining amplitudes. For non-standard WWZWWZ couplings these cancelations no longer occur and the approximate amplitude zero is eliminated.Comment: 11 pages, 4 figures submitted separately as uuencoded tar-ed postscript files, FSU-HEP-940307, UCD-94-
    corecore