79 research outputs found
Mesodermal Progenitor Cells (MPCs) Differentiate into Mesenchymal Stromal Cells (MSCs) by Activation of Wnt5/Calmodulin Signalling Pathway
Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage of MSCs (SSEA-4(neg)CD105+CD90(bright) and MSCA-1+), in the primary cultures, resulted lower than 2%.We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90(bright) early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine intense secretion of Wnt5a and Wnt5b (p<0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4(neg)). We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction (ID₅₀ =  0.5 µM, p<0.01), while endothelial differentiation was unaffected.The present study describes two different putative progenitors (early and late MSCs) that, together with already described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These results suggest that some modifications to the widely accepted MSC nomenclature are required
The upgrade of the ALICE TPC with GEMs and continuous readout
The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio
POWERFUL INHIBITOR OF GUANINE DEAMINASE
The synthesis of 9-(p-carbetoxyphenyl) guanine is reported. The assays carried out on guanine deaminase from rat and rabbit liver and pig brain show that this compound is a powerful inhibitor. The compound has a Ki = 5 uM for the enzyme from pig brain. The use of the inhibitor for the synthesis of a specific adsorbent for guanine deaminase was studied
- …