105 research outputs found

    Stress-dependent elastic properties of shales: measurement and modeling

    Get PDF
    Despite decades of research, current understanding of elastic properties of shales is insufficient as it is based on a limited number of observations caused by the time-consuming nature of testing resulting from their low permeability. Though it is well known that shales are highly anisotropic and assumed to be transversely isotropic (TI) media, few laboratory experiments have been carried out for measuring the five elastic constants that define TI media on well-preserved shales. Many previous measurements were made without control of pore pressure, which is crucial for the determination of shale elastic properties

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory

    Field Borehole Testing of Anisotropic Shale Rock

    No full text

    A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    Get PDF
    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, nonplanar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.National Natural Science Foundation of China [51674010]; National Science and Technology Major Project of China [2016ZX05014]; China Scholarship Council (CSC) [201506010205]SCI(E)ARTICLE
    • …
    corecore