16 research outputs found

    Irreversible Aging Dynamics and Generic Phase Behavior of Aqueous Suspensions of Laponite

    Full text link
    In this work we study the aging behavior of aqueous suspension of Laponite having 2.8 weight % concentration using rheological tools. At various salt concentration all the samples demonstrate orientational order when observed using crossed polarizers. In rheological experiments we observe inherent irreversibility in the aging dynamics which forces the system not to rejuvenate to the same state in the shear melting experiment carried out at a later date since preparation. The extensive rheological experiments carried out as a function of time elapsed since preparation demonstrate the self similar trend in the aging behavior irrespective of the concentration of salt. We observe that the exploration of the low energy states as a function of aging time is only kinetically affected by the presence of salt. We estimate that the energy barrier to attain the low energy states decreases linearly with increase in the concentration of salt. The observed superposition of all the elapsed time and the salt concentration dependent data suggests that the aging that occurs in low salt concentration systems over a very long period is qualitatively similar to the aging behavior observed in systems with high salt concentration over a shorter period.Comment: 27 pages, 8 figures. Langmuir, in pres

    Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of data on protein-protein interactions (PPIs) available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine.</p> <p>Results</p> <p>To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS). Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs) retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM). Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV) proteins identified to date.</p> <p>Conclusions</p> <p>The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.</p

    Analysis of Process Parameters Affecting Spray-Dried Oily Core Nanocapsules Using Factorial Design

    No full text
    The purpose of this work was to optimize the process parameters required for the production of spray-dried oily core nanocapsules (NCs) with targeted size and drug yield using a two-level four-factor fractional factorial experimental design (FFED). The coded process parameters chosen were inlet temperature (X1), feed flow rate (X2), atomizing air flow (X3), and aspiration rate (X4). The produced NCs were characterized for size, yield, morphology, and powder flowability by dynamic light scattering, electron microscope, Carr’s index, and Hausner ratio measurement, respectively. The mean size of produced NCs ranged from 129.5 to 444.8 nm, with yield varying from 14.1% to 31.1%. The statistical analysis indicated an adequate model fit in predicting the effect of process parameters affecting yield. Predicted condition for maximum yield was: inlet temperature 140°C, atomizing air flow 600 L/h, feed flow rate 0.18 L/h, and aspiration air flow set at 100%, which led to a yield of 30.8%. The morphological analysis showed the existence of oily core and spherical nanostructure. The results from powder flowability analysis indicated average Carr’s index and Hausner ratio of 42.77% and 1.76, respectively. Spray-dried oily core NCs with size lower than 200 nm were successfully produced, and the FFED proved to be an effective approach in predicting the production of spray-dried NCs of targeted yield

    Current Molecular Imaging of Spinal Tumors in Clinical Practice

    No full text
    Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target’s function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors
    corecore