36 research outputs found

    Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point

    Full text link
    The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly strong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of δS/δB \delta S / \delta B near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), (δT/δB)S(\delta T / \delta B)_S, and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu2+^{2+}-containing coordination polymer, which is a very good realization of a spin-1/2 antiferromagnetic Heisenberg chain - one of the simplest quantum-critical systems.Comment: 21 pages, 4 figure

    Overlapping political budget cycles in the legislative and the executive

    Get PDF
    We advance the literature on political budget cycles by testing separately for cycles in expenditures for elections in the legislative and the executive. Using municipal data, we can separately identify these cycles and account for general year effects. For the executive branch, we show that it is important whether the incumbent re-runs. To account for the potential endogeneity associated with this decision, we apply a unique instrumental variables approach based on age and pension eligibility rules. We find sizable and significant effects in expenditures before council elections and before joint elections when the incumbent re-runs
    corecore