111 research outputs found
Self-Consistent Relativistic Calculation of Nucleon Mean Free Path
We present a fully self-consistent and relativistic calculation of the
nucleon mean free path in nuclear matter and finite nuclei. Starting from the
Bonn potential, the Dirac-Brueckner-Hartree-Fock results for nuclear matter are
parametrized in terms of an effective - Lagrangian suitable for
the relativistic density-dependent Hartree-Fock (RDHF) approximation. The
nucleon mean free path in nuclear matter is derived from this effective
Lagrangian taking diagrams up to fourth-order into account. For the nucleon
mean free path in finite nuclei, we make use of the density determined by the
RDHF calculation in the local density approximation. Our microscopic results
are in good agreement with the empirical data and predictions by Dirac
phenomenology.Comment: 16 pages RevTex and 6 figures (paper, available upon request from
[email protected]) UI-NTH-931
Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes
Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation
PENGARUH PENAMBAHAN CACAHAN LIMBAH PLASTIK JENIS HIGH DENSITY POLYETHYLENE (HDPE) PADA
Waste is a very complex problem in urban area. Plastic waste is increasing every year. Kupang with population of 291,794 people generate waste reaches 926 m3/day. Organic waste to 700 m3 and inorganic waste about 226 m3.
Concrete is planned by strength quality 25 MPa. Based on the analysis in this study obtained that concrete flexural strength value increased due to the addition of HDPE plastic shredded into the concrete, with chopped levels are added to the concrete at 0%, 0.50% and 0.90% .0,70%. Flexural strength value of normal concrete without the addition of shredded plastic (0%) is 4.12 MPa, flexural strength of concrete with the addition of shredded plastic 0.50% is 4.30 MPa increased 4.37% from normal concrete flexural strength, flexural strength of concrete with the addition of shredded plastics 0.70% is 4.21 MPa increased 2.19% from the normal concrete flexural strength and flexural strength of concrete with the addition of shredded plastic 0.90% is 3.94 MPa decreased 3.64% of flexural strength normal concrete
Vascular Wall-Resident CD44+ Multipotent Stem Cells Give Rise to Pericytes and Smooth Muscle Cells and Contribute to New Vessel Maturation
Here, we identify CD44(+)CD90(+)CD73(+)CD34(−)CD45(−) cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs). VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes
Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems
Recent trends of ab initio studies and progress in methodologies for
electronic structure calculations of strongly correlated electron systems are
discussed. The interest for developing efficient methods is motivated by recent
discoveries and characterizations of strongly correlated electron materials and
by requirements for understanding mechanisms of intriguing phenomena beyond a
single-particle picture. A three-stage scheme is developed as renormalized
multi-scale solvers (RMS) utilizing the hierarchical electronic structure in
the energy space. It provides us with an ab initio downfolding of the global
band structure into low-energy effective models followed by low-energy solvers
for the models. The RMS method is illustrated with examples of several
materials. In particular, we overview cases such as dynamics of semiconductors,
transition metals and its compounds including iron-based superconductors and
perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an
invited review pape
Mott Transition and Phase Diagram of -(BEDT-TTF)2Cu(NCS)2 Studied by Two-Dimensional Model Derived from Ab initio Method
We present an ab initio analysis for the ground-state properties of a
correlated organic compound -(BEDT-TTF)2Cu(NCS)2. First, we derive an
effective two-dimensional low-energy model from first principles, having
short-ranged transfers and short-ranged Coulomb and exchange interactions.
Then, we perform many-variable variational Monte Carlo calculations for this
model and draw a ground-state phase diagram as functions of scaling parameters
for the onsite and off-site interactions. The phase diagram consists of three
phases; a paramagnetic metallic phase, an antiferromagnetic (Mott) insulating
phase, and a charge-ordered insulating phase. In the phase diagram, the
parameters for the real compound are close to the first-order Mott transition,
being consistent with experiments. We show that the off-site Coulomb and
exchange interactions affect the phase boundary; (i) they appreciably stabilize
the metallic state against the Mott insulating phase and (ii) enhance charge
fluctuations in a wide parameter region in the metallic phase.
We observe arc-like structure in Fermi surface around the region where the
charge fluctuations are enhanced. Possible relevance of the charge fluctuations
to the experimentally observed dielectric anomaly in the -BEDT-TTF
family compounds is also pointed out.Comment: 15 pages, 11 figures (minor revision, to appear in JPSJ
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
Development of photon beam diagnostics for VUV radiation from a SASE FEL
For the proof-of-principle experiment of self-amplified spontaneous emission (SASE) at short wavelengths on the VUV FEL at DESY a multi-facetted photon beam diagnostics experiment has been developed employing new detection concepts to measure all SASE specific properties on a single pulse basis. The present setup includes instrumentation for the measurement of the energy and the angular and spectral distribution of individual photon pulses. Different types of photon detectors such as PtSi-photodiodes and fast thermoelectric detectors based on YBaCuO-films are used to cover some five orders of magnitude of intensity from the level of spontaneous emission to FEL radiation at saturation. A 1 m normal incidence monochromator in combination with a fast intensified CCD camera allows to select single photon pulses and to record the full spectrum at high resolution to resolve the fine structure due to the start-up from noise
Grazing-incidence spectrometer for the monitoring of the VUVFEL beam at DESY
A stigmatic spectrometer for the 2.5-40 nm EUV region has been realized. The design consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties and of a spherical mirror mounted in the Kirkpatrick-Baez configuration that compensates for the astigmatism. The spectrum is acquired on a fluorescent screen and intensified CCD detector, that can be moved along the spectral focal curve to select the spectral region to be acquired. The spectral and spatial resolution of the system have been characterized by using the emission from an hollow-cathode lamp and a laser-produced plasma. At present, the instrument is installed at the VUV-FEL at DESY for the spectral monitoring of the FEL beam in the 20-45 nm region
- …