6,918 research outputs found

    Microsaccade Rate Varies with Subjective Visibility during Motion-Induced Blindness

    Get PDF
    Motion-induced blindness (MIB) occurs when a dot embedded in a motion field subjectively vanishes. Here we report the first psychophysical data concerning effects of microsaccade/eyeblink rate upon perceptual switches during MIB. We find that the rate of microsaccades/eyeblink rises before and after perceptual transitions from not seeing to seeing the dot, and decreases before perceptual transitions from seeing it to not seeing it. In addition, event-related fMRI data reveal that, when a dot subjectively reappears during MIB, the blood oxygen-level dependent (BOLD) signal increases in V1v and V2v and decreases in contralateral hMT+. These BOLD signal changes observed upon perceptual state changes in MIB could be driven by the change of perceptual states and/or a confounding factor, such as the microsaccade/eyeblink rate

    Zoom-SVD: Fast and Memory Efficient Method for Extracting Key Patterns in an Arbitrary Time Range

    Full text link
    Given multiple time series data, how can we efficiently find latent patterns in an arbitrary time range? Singular value decomposition (SVD) is a crucial tool to discover hidden factors in multiple time series data, and has been used in many data mining applications including dimensionality reduction, principal component analysis, recommender systems, etc. Along with its static version, incremental SVD has been used to deal with multiple semi infinite time series data and to identify patterns of the data. However, existing SVD methods for the multiple time series data analysis do not provide functionality for detecting patterns of data in an arbitrary time range: standard SVD requires data for all intervals corresponding to a time range query, and incremental SVD does not consider an arbitrary time range. In this paper, we propose Zoom-SVD, a fast and memory efficient method for finding latent factors of time series data in an arbitrary time range. Zoom-SVD incrementally compresses multiple time series data block by block to reduce the space cost in storage phase, and efficiently computes singular value decomposition (SVD) for a given time range query in query phase by carefully stitching stored SVD results. Through extensive experiments, we demonstrate that Zoom-SVD is up to 15x faster, and requires 15x less space than existing methods. Our case study shows that Zoom-SVD is useful for capturing past time ranges whose patterns are similar to a query time range.Comment: 10 pages, 2018 ACM Conference on Information and Knowledge Management (CIKM 2018

    Fast and Accurate Dual-Way Streaming PARAFAC2 for Irregular Tensors -- Algorithm and Application

    Full text link
    How can we efficiently and accurately analyze an irregular tensor in a dual-way streaming setting where the sizes of two dimensions of the tensor increase over time? What types of anomalies are there in the dual-way streaming setting? An irregular tensor is a collection of matrices whose column lengths are the same while their row lengths are different. In a dual-way streaming setting, both new rows of existing matrices and new matrices arrive over time. PARAFAC2 decomposition is a crucial tool for analyzing irregular tensors. Although real-time analysis is necessary in the dual-way streaming, static PARAFAC2 decomposition methods fail to efficiently work in this setting since they perform PARAFAC2 decomposition for accumulated tensors whenever new data arrive. Existing streaming PARAFAC2 decomposition methods work in a limited setting and fail to handle new rows of matrices efficiently. In this paper, we propose Dash, an efficient and accurate PARAFAC2 decomposition method working in the dual-way streaming setting. When new data are given, Dash efficiently performs PARAFAC2 decomposition by carefully dividing the terms related to old and new data and avoiding naive computations involved with old data. Furthermore, applying a forgetting factor makes Dash follow recent movements. Extensive experiments show that Dash achieves up to 14.0x faster speed than existing PARAFAC2 decomposition methods for newly arrived data. We also provide discoveries for detecting anomalies in real-world datasets, including Subprime Mortgage Crisis and COVID-19.Comment: 12 pages, accept to The 29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 202

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Numerical analysis of bed elevation and bank line changes at the confluence of Nakdong and Geumho Rivers in Korea

    Get PDF
    The river confluence forms complex flow pattern because of different inflow discharges from the main stream and tributary. Complex flow feature at the confluence affects geomorphological changes. Especially rapid and continuous flow changes produce unstable condition in the channel geometry. Therefore, it is important to analyze geomorphological changes such as bank erosion and deposition as well as bed changes at the confluence channel for river maintenance and management, especially before and after the construction of river structures like weirs and bridges. Progressive erosions including headcutting and bank erosion are expected in the confluence in Nakdong River and Geumho River, Korea because a large weir (Gangjeong-Goryeong Weir) has been constructed in the upstream channel during Four Major Rivers Restoration Project. Therefore, flow changes, bed elevation changes, and bank-line changes have been simulated in this study using the 2-dimensional numerical model of CCHE2D (Center for Computational Hydroscience and Engineering 2-Dimension) to analyze variations after the weir construction. The largest flood event before and after the weir construction is selected for hydraulic condition in the model. The measured data for flow and sediment discharge at the Dongchon Station in the Geumho River and Waegwan Station in the Nakdong River have been used for boundary conditions. Numerical simulations of this study reproduce similar variation to the actual condition regarding geomorphological changes in the river confluence. The study results should provide fundamental information to establish many countermeasures for channel stability against excessive erosion and deposition of bed and bank at the confluence section
    corecore