9 research outputs found

    Acute renal failure in dense deposit disease: complete recovery after combination therapy with immunosuppressant and plasma exchange.

    No full text
    We describe the clinical course of a female adolescent who was followed because of isolated microhematuria and hypocomplementemia before admission to hospital with a sudden onset of acute renal failure. At presentation, she exhibited complement consumption through the complement alternative pathway (AP) while other serologic tests were negative. Renal biopsy revealed dense deposit disease (DDD) with a crescentic pattern. Intravenous methylprednisolone, followed by plasma exchange (PE), and intravenous cyclophosphamide pulses were started shortly after admission. C3NeF and anti-factor H antibody tests were negative. Serum factor H and I levels were normal as well as factor H activity. Screening for mutation in the factor H gene revealed the H402 allele variant. Clinical remission, defined as normalization in renal function and in the activity levels of the complement AP, was noted at one month post-presentation and throughout the follow-up. A repeat renal biopsy showed the disappearance of crescent formation, whereas electron microscopy revealed no regression in dense transformation of the lamina densa. In summary, our patient was successfully treated with immunosuppressant and PE. The absence of known factors associated with DDD suggests that, in this particular case, other regulatory mechanisms of complement AP might have been involved in the disease process

    Angiotensinergic innervation of the kidney: present knowledge and its significance.

    No full text
    Intrarenal neurotransmission implies the co-release of neuropeptides at the neuro-effector junction with direct influence on parameters of kidney function. The presence of an angiotensin (Ang) II-containing phenotype in catecholaminergic postganglionic and sensory fibers of the kidney, based on immunocytological investigations, has only recently been reported. These angiotensinergic fibers display a distinct morphology and intrarenal distribution, suggesting anatomical and functional subspecialization linked to neuronal Ang II-expression. This review discusses the present knowledge concerning these fibers, and their significance for renal physiology and the pathogenesis of hypertension in light of established mechanisms. The data suggest a new role of Ang II as a co-transmitter stimulating renal target cells or modulating nerve traffic from or to the kidney. Neuronal Ang II is likely to be an independent source of intrarenal Ang II. Further physiological experimentation will have to explore the role of the angiotensinergic renal innervation and integrate it into existing concepts
    corecore