23 research outputs found

    Meeting nutritional targets of critically ill patients by combined enteral and parenteral nutrition: review and rationale for the EFFORTcombo trial.

    Get PDF
    While medical nutrition therapy is an essential part of the care for critically ill patients, uncertainty exists about the right form, dosage, timing and route in relation to the phases of critical illness. As enteral nutrition (EN) is often withheld or interrupted during the intensive care unit (ICU) stay, combined EN and parenteral nutrition (PN) may represent an effective and safe option to achieve energy and protein goals as recommended by international guidelines. We hypothesise that critically ill patients at high nutritional risk may benefit from such a combined approach during their stay on the ICU. Therefore, we aim to test if an early combination of EN and high-protein PN (EN+PN) is effective in reaching energy and protein goals in patients at high nutritional risk, while avoiding overfeeding. This approach will be tested in the here-presented EFFORTcombo trial. Nutritionally high-risk ICU patients will be randomised to either high (≥2·2 g/kg per d) or low protein (≤1·2 g/kg per d). In the high protein group, the patients will receive EN+PN; in the low protein group, patients will be given EN alone. EN will be started in accordance with international guidelines in both groups. Efforts will be made to reach nutrition goals within 48-96 h. The efficacy of the proposed nutritional strategy will be tested as an innovative approach by functional outcomes at ICU and hospital discharge, as well as at a 6-month follow-up

    Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria

    Full text link
    Phenylketonuria (PKU) is characterized by phenylalanine accumulation and progressive mental retardation caused by an unknown mechanism. We demonstrate that at pathological concentrations, phenylalanine self-assembles into fibrils with amyloid-like morphology and well-ordered electron diffraction. These assemblies are specifically recognized by antibodies, show cytotoxicity that can be neutralized by the antibodies and are present in the hippocampus of model mice and in parietal cortex brain tissue from individuals with PKU. This is, to our knowledge, the first demonstration that a single amino acid can form amyloid-like deposits, suggesting a new amyloidosis-like etiology for PKU
    corecore