13,863 research outputs found
Concepts, Developments and Advanced Applications of the PAX Toolkit
The Physics Analysis eXpert (PAX) is an open source toolkit for high energy
physics analysis. The C++ class collection provided by PAX is deployed in a
number of analyses with complex event topologies at Tevatron and LHC. In this
article, we summarize basic concepts and class structure of the PAX kernel. We
report about the most recent developments of the kernel and introduce two new
PAX accessories. The PaxFactory, that provides a class collection to facilitate
event hypothesis evolution, and VisualPax, a Graphical User Interface for PAX
objects
On the Angular Dependence of the Radiative Gluon Spectrum
The induced momentum spectrum of soft gluons radiated from a high energy
quark produced in and propagating through a QCD medium is reexamined in the
BDMPS formalism. A mistake in our published work (Physical Review C60 (1999)
064902) is corrected. The correct dependence of the fractional induced loss
as a universal function of the variable
where is the size of the medium and
the transport coefficient is presented. We add the proof that the
radiated gluon momentum spectrum derived in our formalism is equivalent with
the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur
Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico
International audienceThe most recent eruptive phase of Volc'an de Colima, Mexico, started in 1998 and was characterized by dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, activity at the dome was mostly limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. As a consequence of this, no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events were then investigated. Larger rockfall events exhibited a correlation between its previously estimated volume and the surface temperature of the freshly exposed dome surface, as well as the mean temperature of rockfall mass distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature of the newly exposed lava dome as well as a proxy for seismic energy. It was therefore possible to calibrate the seismic signals using the volumes estimated from photographs and the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008±0.003 to 0.02±0.007m3 s−1 during 2010 and dropped down to 0.008±0.003m3 s−1 again in March 2011. In June 2011, magma extrusion had come to a halt. The methodology presented represents a reliable tool to constrain the growth rate of domes that are repeatedly affected by partial collapses. There is a good correlation between thermal and seismic energies and rockfall volume. Thus it is possible to calibrate the seismic records associated with the rockfalls (a continuous monitoring tool) to improve volcano monitoring at volcanoes with active dome growth
Charged currents, color dipoles and xF_3 at small x
We develop the light-cone color dipole description of highly asymmetric
diffractive interactions of left-handed and right-handed electroweak bosons. We
identify the origin and estimate the strength of the left-right asymmetry
effect in terms of the light-cone wave functions. We report an evaluation of
the small-x neutrino-nucleon DIS structure functions xF_3 and 2xF_1 and present
comparison with experimental data.Comment: 11 pages, 3 figures, misprints correcte
Recommended from our members
First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma.
PurposeGDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. A first-in-human, phase I study was conducted in patients with recurrent high-grade glioma.Patients and methodsGDC-0084 was administered orally, once daily, to evaluate safety, pharmacokinetics (PK), and activity. Fluorodeoxyglucose-PET (FDG-PET) was performed to measure metabolic responses.ResultsForty-seven heavily pretreated patients enrolled in eight cohorts (2-65 mg). Dose-limiting toxicities included 1 case of grade 2 bradycardia and grade 3 myocardial ischemia (15 mg), grade 3 stomatitis (45 mg), and 2 cases of grade 3 mucosal inflammation (65 mg); the MTD was 45 mg/day. GDC-0084 demonstrated linear and dose-proportional PK, with a half-life (∼19 hours) supportive of once-daily dosing. At 45 mg/day, steady-state concentrations exceeded preclinical target concentrations producing antitumor activity in xenograft models. FDG-PET in 7 of 27 patients (26%) showed metabolic partial response. At doses ≥45 mg/day, a trend toward decreased median standardized uptake value in normal brain was observed, suggesting central nervous system penetration of drug. In two resection specimens, GDC-0084 was detected at similar levels in tumor and brain tissue, with a brain tissue/tumor-to-plasma ratio of >1 and >0.5 for total and free drug, respectively. Best overall response was stable disease in 19 patients (40%) and progressive disease in 26 patients (55%); 2 patients (4%) were nonevaluable.ConclusionsGDC-0084 demonstrated classic PI3K/mTOR-inhibitor related toxicities. FDG-PET and concentration data from brain tumor tissue suggest that GDC-0084 crossed the blood-brain barrier
Suppression of peripheral pain by blockade of voltage-gated calcium 2.2 channels in nociceptors induces RANKL and impairs recovery from inflammatory arthritis in a mouse model
Objective: A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies the inflammation and joint deformation. Patients with RA rate pain relief with highest priority, however, few studies have addressed the efficacy and safety of therapies directed specifically towards pain pathways. The conotoxin MVIIA (Prialt/Ziconotide) is used in humans to alleviate persistent pain syndromes because it specifically blocks the CaV 2.2 voltage-gated calcium channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The purpose of this study was to investigate whether block of CaV 2.2 can suppress arthritic pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade. Methods: Transgenic mice (Tg-MVIIA) expressing a membrane-tethered form of the {Omega}-conotoxin MVIIA, under the control of a nociceptor-specific gene, were employed. These mice were subjected to unilateral induction of joint inflammation using the Antigen- and Collagen-Induced Arthritis (ACIA) model. Results: We observed that CaV 2.2-blockade mediated by t-MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsides, Tg-MVIIA mice showed continued inflammation with an up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction. Conclusion: Altogether, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons, impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation
Isospin violation and the proton's neutral weak magnetic form factor
The effects of isospin violation on the neutral weak magnetic form factor of
the proton are studied using two-flavour chiral perturbation theory. The first
nonzero contributions appear at O(p^4) in the small-momentum expansion, and the
O(p^5) corrections are also calculated. The leading contributions from an
explicit Delta(1232) isomultiplet are included as well. At such a high order in
the chiral expansion, one might have expected a large number of unknown
parameters to contribute. However, it is found that no unknown parameters can
appear within loop diagrams, and a single tree-level counterterm at O(p^4) is
sufficient to absorb all divergences. The momentum dependence of the neutral
weak magnetic form factor is not affected by this counterterm.Comment: 26 pages including 9 figure
- …