97 research outputs found
Percutaneous cement augmentation for the treatment of depression fractures of the tibial plateau
The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplastyâ, using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term result
A taxonomic backbone for the global synthesis of species diversity in the angiosperm order caryophyllales
The Caryophyllales constitute a major lineage of flowering plants with approximately 12?500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the âFamilies and genera of vascular plantsâ series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world. © 2015 BGBM Berlin
Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds
Effect of Bilateral Mandibular Osteodistration on the Condylar Cartilage: An Experimental Study on Rabbits
Although various aspects of bone formation during distraction osteogenesis have been studied extensively, there are only limited experimental data concerning the influence of hyper-physiologic mandibular distraction rate on structural alterations in the temporomandibular joint (TMJ) condylar cartilage. The purpose of this study was to evaluate the effect of bilateral distraction osteogenesis of the mandibular body, at a hyper-physiologic rate and length, on the integrity of the condylar cartilage in rabbits. MATERIALS AND METHODS: Eighteen healthy adult male rabbits weighing 2 to 3 kg were assigned to 1 of 2 groups: the control group (n = 2 rabbits, 4 joints) or the study group (n = 16 rabbits, 32 joints) four rabbits (8 joints) in each subgroup according to the post-distraction period (1,2,3 or 4 weeks). In the control group, rabbits received sham surgery (Osteotomy without distraction) and then left to live for 4 weeks under the same condition of the study group then euthanized using intravenous overdose of pentobarbital sodium. In the study group, an extra oral custom-made distracter was employed to achieve bilateral mandibular hyper physiologic distraction (1.5 mm twice daily for 5 days) distraction. All animals were evaluated clinically and histomorphometrically and results analyzed by MINITABE 13.1 statistical package using ANOVA test. RESULTS: Animals underwent distraction showed obvious changes in condylar surface contour related to length of the follow up period, compared to the control; these changes seemed to be partly reversible. The most pronounced observation was the irregularities and resorption in the anterior part of the condylar cartilage and the subcondylar bone. Moreover, at the first two weeks, the area of resorption was invaded by large number of osteoclasts and chronic inflammatory cells which declined later in the 3rd and 4th weeks and replaced with osteoblastic activities. CONSLUSION: These experimental data showed that distraction rate of 3 mm per day may lead to degenerative or even early arthritic changes in the TMJ condylar cartilage in the 1st and 2nd post-distraction weeks. However, all condyles showed adaptive and remodeling sings in the following 3rd and 4th weeks
A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation
The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants
New data about the suspensor of succulent angiosperms : ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz
The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper
A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales
The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plantsâ series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
- âŠ