8 research outputs found

    Suppression of peripheral pain by blockade of voltage-gated calcium 2.2 channels in nociceptors induces RANKL and impairs recovery from inflammatory arthritis in a mouse model

    Get PDF
    Objective: A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies the inflammation and joint deformation. Patients with RA rate pain relief with highest priority, however, few studies have addressed the efficacy and safety of therapies directed specifically towards pain pathways. The conotoxin MVIIA (Prialt/Ziconotide) is used in humans to alleviate persistent pain syndromes because it specifically blocks the CaV 2.2 voltage-gated calcium channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The purpose of this study was to investigate whether block of CaV 2.2 can suppress arthritic pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade. Methods: Transgenic mice (Tg-MVIIA) expressing a membrane-tethered form of the {Omega}-conotoxin MVIIA, under the control of a nociceptor-specific gene, were employed. These mice were subjected to unilateral induction of joint inflammation using the Antigen- and Collagen-Induced Arthritis (ACIA) model. Results: We observed that CaV 2.2-blockade mediated by t-MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsides, Tg-MVIIA mice showed continued inflammation with an up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction. Conclusion: Altogether, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons, impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation

    A chronic model of arthritis supported by a strain-specific periarticular lymph node in BALB/c mice

    Get PDF
    Current animal models of arthritis only partially reflect the complexity of rheumatoid arthritis and typically lack either chronicity or autoantibody formation. Here we describe a model that combines features of antigen-induced arthritis and collagen-induced arthritis, which can be efficiently induced in BALB/c and C57BL/6 mice. However, BALB/c mice generate significantly higher titres of anticollagen and anticitrullinated peptide antibodies, show a stronger progressive joint destruction, and in the chronic phase the disease spreads between joints. Concomitant to the observation of a more severe pathology, we discovered a previously undescribed small periarticular lymph node in close proximity to the knee joint of BALB/c mice, which acts as the primary draining lymph node for the synovial cavity. Our model more closely reflects the pathology of rheumatoid arthritis than classical models of arthritis and is hence particularly suitable for further studies of disease pathogenesis

    Cytotoxic T cells modulate inflammation and endogenous opioid analgesia in chronic arthritis

    Get PDF
    BACKGROUND: This study examined the development of chronic pain, a cardinal symptom of rheumatoid arthritis (RA), in mice with antigen- and collagen-induced arthritis (ACIA). Since the role of CD8(+) T cells in arthritis is controversial, we investigated the consequences of CD8-depletion on arthritis development and opioid modulation of pain in this novel model of chronic autoimmune arthritis. METHODS: Disease severity in control and CD8-depleted animals was determined by histological assessment of knee-joint sections and measurement of autoantibody formation. Pain was evaluated by measuring mechanical allodynia and thermal hyperalgesia in von Frey and Hargreaves tests, respectively. The production and release of endogenous opioids and inflammatory cytokines was assessed in immunoassays. RESULTS: In ACIA, mice display persistent mechanical allodynia and thermal hyperalgesia for more than 2 months after induction of arthritis. The blockade of peripheral opioid receptors with naloxone-methiodide (NLXM) transiently increased thermal hyperalgesia, indicating that endogenous opioid peptides were released in the arthritic joint to inhibit pain. CD8(+) T cell depletion did not affect autoantibody formation or severity of joint inflammation, but serum levels of the pro-inflammatory cytokines TNFα and IL-17 were increased. The release of opioid peptides from explanted arthritic knee cells and the NLXM effect were significantly reduced in the absence of CD8(+) T cells. CONCLUSIONS: We have successfully modeled the development of chronic pain, a hallmark of RA, in ACIA. Furthermore, we detected a yet unknown protective role of CD8(+) T cells in chronic ACIA since pro-inflammatory cytokines rose and opioid peptide release decreased in the absence of these cells

    Research consortium Neuroimmunology and pain in the research network musculoskeletal diseases

    No full text
    The research consortium Neuroimmunology and Pain (Neuroimpa) explores the importance of the relationships between the immune system and the nervous system in musculoskeletal diseases for the generation of pain and for the course of fracture healing and arthritis. The spectrum of methods includes analyses at the single cell level, in vivo models of arthritis and fracture healing, imaging studies on brain function in animals and humans and analysis of data from patients. Proinflammatory cytokines significantly contribute to the generation of joint pain through neuronal cytokine receptors. Immune cells release opioid peptides which activate opioid receptors at peripheral nociceptors and thereby evoke hypoalgesia. The formation of new bone after fractures is significantly supported by the nervous system. The sympathetic nervous system promotes the development of immune-mediated arthritis. The studies show a significant analgesic potential of the neutralization of proinflammatory cytokines and of opioids which selectively inhibit peripheral neurons. Furthermore, they show that the modulation of neuronal mechanisms can beneficially influence the course of musculoskeletal diseases. Interventions in the interactions between the immune system and the nervous system hold a great therapeutic potential for the treatment of musculoskeletal diseases and pain

    Qualitative sex differences in pain processing: emerging evidence of a biased literature

    No full text
    corecore