45 research outputs found

    Vesicle-Like Biomechanics Governs Important Aspects of Nuclear Geometry in Fission Yeast

    Get PDF
    It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells

    From Prototyping to Allotyping. The invention of change of use and the crisis of building types

    Get PDF
    The chapter analyses the invention and the form of the discourse on building conversion as one particular instance of redefining what a technology is and how it operates. I describe a shift from expert defined closure to lay based openness and tinkering as a shift from prototyping to allotyping: Since the early 1970s, change of use and building conversion have become a central and fashionable discourse among architects and architectural theorists. Before the 1970s, buildings were understood as technologies, as ‘society made durable’. The notion of building type was central to link a building to a given use. A bank was a bank because architects applied existing templates, prototypes, to turn a building into a bank. In the 1970s, suddenly buildings became flexible – discursively, since building conversion always existed: ‘Building type’ no longer was a meaningful link between a building and its use. A bank should not stay a bank, but become a hotel, a theatre or a flat, in short: an allotype. The chapter elucidate this central shift in thinking about buildings and reflects on the special case of allotyping buildings and how it continues to vex thinking about buildings

    Metabolism: Utopian Urbanism and the Japanese Modern Architecture Movement

    No full text
    The Fukushima catastrophe has led to important practical and conceptual shifts in contemporary Japanese architecture which in turn has led to a re-evaluation of the influential 1960s Japanese modern architecture movement, Metabolism. The Metabolists had the ambition to create a new Japanese society through techno-utopian city planning. The new generation of Japanese architects, after the Fukushima event, no longer seek evolutionally social change; rather, the disaster has made them re-consider what architecture is and what architects can do for people who had everything snatched from them by technology (nuclear power station) and nature (earthquake and tsunami). Drawing on the architectural projects of Tange Kenzo and Metabolists in the 1960s and Ito Toyo’s ‘Home-for-All project’ in 2011, the paper explores this major paradigm shift in Japanese architectural theory and practices

    Multigene profiles to guide the use of neoadjuvant chemotherapy for breast cancer: a Copenhagen Breast Cancer Genomics Study

    No full text
    Abstract Estrogen receptor (ER) and human epidermal growth factor 2 (HER2) expression guide the use of neoadjuvant chemotherapy (NACT) in patients with early breast cancer. We evaluate the independent predictive value of adding a multigene profile (CIT256 and PAM50) to immunohistochemical (IHC) profile regarding pathological complete response (pCR) and conversion of positive to negative axillary lymph node status. The cohort includes 458 patients who had genomic profiling performed as standard of care. Using logistic regression, higher pCR and node conversion rates among patients with Non-luminal subtypes are shown, and importantly the predictive value is independent of IHC profile. In patients with ER-positive and HER2-negative breast cancer an odds ratio of 9.78 (95% CI 2.60;36.8), P < 0.001 is found for pCR among CIT256 Non-luminal vs. Luminal subtypes. The results suggest a role for integrated use of up-front multigene subtyping for selection of a neoadjuvant approach in ER-positive HER2-negative breast cancer
    corecore