417 research outputs found

    Proteomic Analysis of the Differential Protein Expression Reveals Nuclear GAPDH in Activated T Lymphocytes

    Get PDF
    Despite the important role of T cell activation in the adaptive immunity, very little is known about the functions of proteins that are differentially expressed in the activated T cells. In this study, we have employed proteomic approach to study the differentially expressed proteins in activated T cells. A total of 25 proteins was characterized that displayed a decreased expression, while a total of 20 proteins was characterized that displayed an increased expression in the activated T cells. Among them, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified unexpectedly as one of the up-regulated proteins. Western blot analysis of proteins separated by 2-dimensional gel electrophoresis had identified several modified GAPDHs which were detectable only in the activated T cells, but not in resting T cells. These modified GAPDHs had higher molecular mass and more basic PI, and were present in the nucleus of activated T cells. Promoter occupancy studies by chromatin immunoprecipitation assay revealed that nuclear GAPDH could be detected in the promoter of genes that were up-regulated during T cell activation, but not in the promoter of genes that were not unaffected or down-regulated. Our results suggest that nuclear GAPDH may function as transcriptional regulator in activated T cells

    Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm) transmission x-ray microimages with both absorption contrast and phase contrast -- including two-dimensional (2D) projection images and three-dimensional (3D) tomographic reconstructions that directly show the nanoparticles.</p> <p>Results</p> <p>Practical tests were successfully conducted on bare and polyethylene glycol (PEG) coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen.</p> <p>Conclusions</p> <p>We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach.</p

    Collaborative Localization in Wireless Sensor Networks via Pattern Recognition in Radio Irregularity Using Omnidirectional Antennas

    Get PDF
    In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments

    Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Get PDF
    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3

    Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decade, gene expression microarray studies have greatly expanded our knowledge of genetic mechanisms of human diseases. Meta-analysis of substantial amounts of accumulated data, by integrating valuable information from multiple studies, is becoming more important in microarray research. However, collecting data of special interest from public microarray repositories often present major practical problems. Moreover, including low-quality data may significantly reduce meta-analysis efficiency.</p> <p>Results</p> <p>M<sup>2</sup>DB is a human curated microarray database designed for easy querying, based on clinical information and for interactive retrieval of either raw or uniformly pre-processed data, along with a set of quality-control metrics. The database contains more than 10,000 previously published Affymetrix GeneChip arrays, performed using human clinical specimens. M<sup>2</sup>DB allows online querying according to a flexible combination of five clinical annotations describing disease state and sampling location. These annotations were manually curated by controlled vocabularies, based on information obtained from GEO, ArrayExpress, and published papers. For array-based assessment control, the online query provides sets of QC metrics, generated using three available QC algorithms. Arrays with poor data quality can easily be excluded from the query interface. The query provides values from two algorithms for gene-based filtering, and raw data and three kinds of pre-processed data for downloading.</p> <p>Conclusion</p> <p>M<sup>2</sup>DB utilizes a user-friendly interface for QC parameters, sample clinical annotations, and data formats to help users obtain clinical metadata. This database provides a lower entry threshold and an integrated process of meta-analysis. We hope that this research will promote further evolution of microarray meta-analysis.</p

    Memory Impairment and Plasma BDNF Correlates of the BDNF Val66Met Polymorphism in Patients With Bipolar II Disorder

    Get PDF
    Studies suggest that a functional polymorphism of brain-derived neurotrophic factor (BDNF), polymorphism BDNF Val66Met affects cognitive functions, however, the effect is unclear in bipolar II (BD-II) disorder. We used the Wechsler Memory Scale-third edition (WMS-III), the presence of the BDNF Val66Met polymorphism, and plasma concentrations of BDNF to investigate the association between memory impairment and BDNF in BD-II disorder. We assessed the memory functions of 228 BD-II patients and 135 healthy controls (HCs). BD-II patients had significantly lower scores on five of the eight WMS-III subscales. In addition to education, the BDNF polymorphism were associated with the following subscales of WMS-III, auditory delayed memory, auditory delayed recognition memory and general memory scores in BD-II patients, but not in HC. Moreover, BD-II patients with the Val-homozygote scored significantly higher on the visual immediate memory subscale than did those with the Met/Met and Val/Met polymorphisms. The significantly positive effect of the Val-homozygote did not have a significantly positive effect on memory in the HC group, however. We found no significant association between BDNF polymorphisms and plasma concentrations of BDNF. The plasma BDNF was more likely to be associated with clinical characteristics than it was with memory indices in the BD-II group. The impaired memory function in BD-II patients might be dependent upon the association between the BDNF Val66Met polymorphism and peripheral BDNF levels

    A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors

    Get PDF
    Bio-molecular recognition is detected by the unique optical properties of self-assembled gold nanoparticles on the unclad portions of an optical fiber whose surfaces have been modified with a receptor. To enhance the performance of the sensing platform, the sensing element is integrated with a microfluidic chip to reduce sample and reagent volume, to shorten response time and analysis time, as well as to increase sensitivity. The main purpose of the present study is to design grooves on the optical fiber for the FO-LPR microfluidic chip and investigate the effect of the groove geometry on the biochemical binding kinetics through simulations. The optical fiber is designed and termed as U-type or D-type based on the shape of the grooves. The numerical results indicate that the design of the D-type fiber exhibits efficient performance on biochemical binding. The grooves designed on the optical fiber also induce chaotic advection to enhance the mixing in the microchannel. The mixing patterns indicate that D-type grooves enhance the mixing more effectively than U-type grooves. D-type fiber with six grooves is the optimum design according to the numerical results. The experimental results show that the D-type fiber could sustain larger elongation than the U-type fiber. Furthermore, this study successfully demonstrates the feasibility of fabricating the grooved optical fibers by the femtosecond laser, and making a transmission-based FO-LPR probe for chemical sensing. The sensor resolution of the sensor implementing the D-type fiber modified by gold nanoparticles was 4.1 × 10−7 RIU, which is much more sensitive than that of U-type optical fiber (1.8 × 10−3 RIU)
    corecore