7 research outputs found

    Augmenting Sensorimotor Control Using “Goal-Aware” Vibrotactile Stimulation during Reaching and Manipulation Behaviors

    Get PDF
    We describe two sets of experiments that examine the ability of vibrotactile encoding of simple position error and combined object states (calculated from an optimal controller) to enhance performance of reaching and manipulation tasks in healthy human adults. The goal of the first experiment (tracking) was to follow a moving target with a cursor on a computer screen. Visual and/or vibrotactile cues were provided in this experiment, and vibrotactile feedback was redundant with visual feedback in that it did not encode any information above and beyond what was already available via vision. After only 10 minutes of practice using vibrotactile feedback to guide performance, subjects tracked the moving target with response latency and movement accuracy values approaching those observed under visually guided reaching. Unlike previous reports on multisensory enhancement, combining vibrotactile and visual feedback of performance errors conferred neither positive nor negative effects on task performance. In the second experiment (balancing), vibrotactile feedback encoded a corrective motor command as a linear combination of object states (derived from a linear-quadratic regulator implementing a trade-off between kinematic and energetic performance) to teach subjects how to balance a simulated inverted pendulum. Here, the tactile feedback signal differed from visual feedback in that it provided information that was not readily available from visual feedback alone. Immediately after applying this novel “goal-aware” vibrotactile feedback, time to failure was improved by a factor of three. Additionally, the effect of vibrotactile training persisted after the feedback was removed. These results suggest that vibrotactile encoding of appropriate combinations of state information may be an effective form of augmented sensory feedback that can be applied, among other purposes, to compensate for lost or compromised proprioception as commonly observed, for example, in stroke survivors

    Tactile Proprioceptive Input in Robotic Rehabilitation after Stroke

    Get PDF
    Stroke can lead to loss or impairment of somatosensory sensation (i.e. proprioception), that reduces functional control of limb movements. Here we examine the possibility of providing artificial feedback to make up for lost sensory information following stroke. However, it is not clear whether this kind of sensory substitution is even possible due to stroke-related loss of central processing pathways that subserve somatosensation. In this paper we address this issue in a small cohort of stroke survivors using a tracking task that emulates many activities of daily living. Artificial proprioceptive information was provided to the subjects in the form of vibrotactile cues. The goal was to assist participants in guiding their arm towards a moving target on the screen. Our experiment indicates reliable tracking accuracy under the effect of vibrotactile proprioceptive feedback, even in subjects with impaired natural proprioception. This result is promising and can create new directions in rehabilitation robotics with augmented somatosensory feedback

    Stable Control Synthesis for Human-in-the-Loop Systems

    No full text

    Iterative Sequential Action Control for Stable, Model-Based Control of Nonlinear Systems

    No full text

    Effects of Optimal Tactile Feedback in Balancing Tasks: A Pilot Study

    No full text
    In this study, we employ optimal control and tactile feedback to teach subjects how to balance a simulated inverted pendulum. The output of a Linear Quadratic Regulator (LQR) was converted to a vibratory teacher-signal and was provided as additional somatosensory feedback to the subjects. The LQR approach is consistent with an energy-saving strategy commonly observed during human motor learning. Our rationale for using the inverted pendulum as a criterion task is that this balance system requires the brain to solve many of the same problems encountered in simple tasks of daily living like transporting a glass of water to the mouth. Experimental results indicate that subjects who trained with the teacher-signal, performed significantly better than subjects who trained only with visual feedback. This result is promising and can be applied, among other fields, in rehabilitation to compensate for lost or compromised proprioception, commonly observed in stroke survivors
    corecore