15 research outputs found
Design and first operation of a supersonic gas jet based beam profile monitor
Noninterceptive beam profile monitors are of great importance for many particle accelerators worldwide. Extra challenges are posed by high energy, high intensity machines and low energy low intensity accelerators. For these applications, existing diagnostics are no longer suitable due to the high power of the beam or the very low intensity. In addition, many other accelerators, from medical to industrial will benefit from a noninvasive, real time beam profile monitor. In this paper we present a new beam profile monitor with a novel design for the nozzle and skimmer configuration to generate a supersonic gas jet meeting ultrahigh vacuum conditions and we describe the first results for such a beam profile monitor at the Cockcroft Institute. This monitor is able to measure two-dimensional profiles of the particle beam while causing negligible disturbance to the beam or to the accelerator vacuum. The ultimate goal for this diagnostic is to provide a versatile and universal beam profile monitor suitable for measuring any beams
Experimental Results of a Gas Jet Based Beam Profile Monitor
A novel, least invasive beam profile monitor based on a supersonic gas jet has been developed by the QUASAR Group at the Cockcroft Institute, UK. It allows the measurement of beam profiles for various particle beams across a range of energies and vacuum levels to be made. A finely collimated neutral gas jet, produced by a nozzle and several skimmers, is injected into a vacuum chamber perpendicular to the main particle beam. Ionization by the primary beam produces ions which are extracted from the interaction region and directed towards an imaging detector. This contribution presents the design of the monitor and first experimental results obtained with a low energy electron beam. It also discusses solutions of previous alignment problems and challenges in the realization of a versatile control and data acquisition syste
Simulations of the Ion Spatial Distribution in a Gas-Curtain Based Beam Profile Monitor
A gas-jet monitor has been developed and commissioned by the QUASAR Group at the Cockcroft Institute, UK. It is designed to measure the transverse profile of a beam by crossing it with a neutral supersonic gas-jet. An array of high voltage electrodes is used to extract ions from the region where the beam and gas-jet interact. These ions first hit a micro-channel plate (MCP) and are then imaged through a phosphor screen and a CCD camera. It is important to understand and characterise the measured ion distribution in order to extract the beam profile. Therefore, numerical investigations using the commercial COMSOL and OPERA codes were carried out benchmarking profile measurements obtained from a low energy electron beam. This paper presents results from these studies. It compares measurements based on the interaction of the primary beam with the residual gas or the ultra-cold gas curtain, and discusses the comparisons of simulated profiles and extraction field configurations on the measured profile
Gas dynamics considerations in a non-invasive profile monitor for charged particle beams
A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented
Development of a Supersonic Gas Jet Beam Profile Monitor
A supersonic gas jet beam profile monitor has been developed by the QUASAR Group at the Cockcroft Institute, UK. It creates a supersonic gas curtain which interacts with the primary beam, and then images the beam cross-section by collecting the generated ions. The gas curtain is inclined at 45 degrees to the beam and functions as a minimally intercepting screen, which allows it to be used in high energy and high power beams without worrying about material damage. An accurate profile measurement requires homogeneous gas density across the curtain, while high resolution measurement requires a very thin jet. In order to characterize the gas curtain density distribution and understand the jet better, a new movable gauge module has been installed in the gas jet test stand. In this contribution, we discuss the monitor design and the characterization of the gas curtain with the newly installed movable gauge module. In addition, we present a new method for the generation of a very narrow pencil jet using deBroglie wave focusing. Such a narrow jet could be used as a non-invasive counterpart to wire scanners in high-intensity beams where the latter cannot be used
Development of a Supersonic Gas-jet Monitor to Measure Beam Profile Non-destructively
The measurement of the transverse beam profile is a great challenge for high intensity, high brightness and high power particle beams due to their destructive power. Current non-destructive methods such as residual gas monitors and beam induced fluorescence monitors either require a rather long integration time or residual gas pressures in the order of 10â»â· mbar to make meaningful measurements. A supersonic gas-jet beam profile monitor has been developed by QUASAR group at the Cockcroft Institute, UK and promises significant improvements over these established techniques. In this monitor, a supersonic gas curtain is generated that crosses the beam to be analyzed under an angle of 45°. When both beams interact, ionization of the gas jet particles occurs and these ions are then accelerated by an electrostatic extraction field towards a Micro Channel Plate (MCP). Beam images are then obtained via a phosphor screen-CCD camera combination. In this contribution, we discuss the monitor design and present beam profile measurements of a 5 keV electron beam. These are complemented by results from measurements using a pulsed valve to study the gas jet dynamics
Characterizing Supersonic Gas Jet-based Beam Profile Monitors
The next generation of high power, high intensity accelerators requires non-invasive diagnostics, particularly beam profile monitors. Residual gas-based diagnostics such as ionization beam profile or beam induced fluorescence monitors have been used to replace commonly used scintillating screens. At the Cockcroft Institute an alternative technique using a supersonic gas jet, shaped into a 45o curtain screen, was developed. It has already demonstrated its superior performance in terms of resolution and signal-to-noise ratio in comparison with residual gas monitors in experimental studies. The performance of this type of monitor depends on the achievable jet homogeneity and quality. Using a movable vacuum gauge as a scanner, the dynamic characteristics of the jet are studied. In this paper we also give an analysis of the resolution for this monitor in detail from the theory and ion drift simulation
Non-invasive Beam Profile Monitoring
State-of-the-art high energy and high intensity accelerators require new approaches to transverse beam profile monitoring as many established techniques will no longer work due to the high power stored in the beam. In addition, many accelerator applications such as ion beam cancer therapy or material irradiation would benefit significantly from the availability of non-invasive beam profile monitors. Research in the QUASAR Group has focused on this area over the past 5 years. Two different approaches were successfully developed: Firstly, a supersonic gas jet-based monitor was designed and commissioned. It enables the detection of the 2-dimensional transverse beam profile of essentially any charged particle beam with negligible disturbance of the primary beam and accelerator vacuum. Secondly, a monitor based on the Silicon strip VELO detector, originally developed for the LHCb experiment, was tested as an online beam monitor at the Clatterbridge Cancer Center in the UK. The design of both monitors is presented in this contribution. Results from measurements are discussed and complemented by numerical studies into the performance limits of either technique
Optical Beam Loss Monitors Based on Fibres for the CLARA Phase 1 Beam-Line
Fibre based Optical Beam Loss Monitors (oBLMs) are on-line devices used in-situ to measure losses along a beam-line. The technology is based on the detection of Cherenkov radiation, produced inside quartz fibres placed alongside the beampipe, from the interaction of secondary showers generated from losses hitting the vacuum pipe. This contribution presents ongoing developments of an oBLM system installed along the Compact Linear Accelerator for Research and Applications (CLARA). The oBLM system consists of 4 channels which allows for sub-metre loss resolution with two dimensional coverage along the entirety of the beam line, as opposed to conventional localised BLM systems. The system was first commissioned to measure dark current from the injector. The ability of the system to locate longitudinal positions of known beam loss locations has also been measured and has shown excellent agreement. We present measurements acquired from the detector during regular operation and during dedicated beam tests. We also discuss the incorporation of the monitor into the accelerator diagnostics system and its use in assisting accelerator characterisation and performance