7 research outputs found

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement

    Detection of plant protein adulterated in fluid milk using two-dimensional gel electrophoresis combined with mass spectrometry

    No full text
    peer reviewedThe illegal or unlabelled addition of plant protein in milk can cause serious anaphylaxis. For sustainable food security, it is therefore important to develop a methodology to detect non-milk protein in milk products. This research aims to differentiate milk adulterated with plant protein using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. According to the protein spots highlighted on the gel of adulterated milk,b-conglycinin and glycinin were detected in milk adulterated with soy protein, while legumin, vicilin, and convicilin indicated the addition of pea protein, and b-amylase and serpin marked wheat protein. These results suggest that a 2-DE-based protein profile is a useful method to identify milk adulterated with soy and pea protein, with a detection limit of 4% plant protein in the total protein
    corecore