2 research outputs found

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors

    No full text
    The most frequent faults in rotating electrical machines occur in their rolling element bearings. Thus, an effective health diagnosis mechanism of rolling element bearings is necessary from operational and economical points of view. Recently, convolutional neural networks (CNNs) have been proposed for bearing fault detection and identification. However, two major drawbacks of these models are (a) their lack of ability to capture global information about the input vector and to derive knowledge about the statistical properties of the latter and (b) the high demand for computational resources. In this paper, short time Fourier transform (STFT) is proposed as a pre-processing step to acquire time-frequency representation vibration images from raw data in variable healthy or faulty conditions. To diagnose and classify the vibration images, the image classification transformer (ICT), inspired from the transformers used for natural language processing, has been suitably adapted to work as an image classifier trained in a supervised manner and is also proposed as an alternative method to CNNs. Simulation results on a famous and well-established rolling element bearing fault detection benchmark show the effectiveness of the proposed method, which achieved 98.3% accuracy (on the test dataset) while requiring substantially fewer computational resources to be trained compared to the CNN approach
    corecore