18 research outputs found

    Oil Media on Paper: Investigating the Effect of Linseed Oils on Pure Cellulosic Paper Supports. A Research Matter of Damage Assessment

    Get PDF
    Oil media on paper, such as oil paintings, sketches, prints, and books, occasionally present problems associated with the effect of oil medium on the paper support, raising a composite matter of condition assessment as it depends on several factors. The present work examines the effect of linseed oil on paper and, in particular, the changes caused by three types of linseed oil on the optical, morphological, mechanical, and chemical properties of pure cellulosic paper, employing mock-ups submitted to artificial ageing in controlled conditions of relative humidity and temperature in airtight vessels. The study involved colorimetry, opacity, tensile strength, pH measurements, SEM, FTIR, and VOC analysis with GC-MS. Processing of the results has so far indicated that thermal-humid ageing caused the gradual darkening of the oil-impregnated mock-ups, as well as alterations in opacity, intense fall of pH values, and severe reductions in tensile strength, while linseed oil processing during manufacture has a significant impact. FTIR spectra have indicated that chemical changes upon ageing are in accordance with those of optical and mechanical changes, while VOC emissions are mostly associated with the drying and degradation of the different types of linseed oil

    Oil Media on Paper: Investigating the Effect of Linseed Oils on Lignocellulosic Paper Supports

    Get PDF
    Condition assessment of works of art created with oil media on paper could be a complex matter when presenting problems of damage due to the absorption of oil binders by the paper support, since they depend on several factors and occur in variable conditions. The present work refers to the results of an investigation on the effect of linseed oils on the color, opacity, morphology, tensile strength, and chemical properties of lignocellulosic papers, in comparison to that of pure cellulosic papers. Lignocellulosic papers are involved in research on new, yet significant, parameters that might influence the behavior of the oil-impregnated areas of the supports upon aging. The research was applied to mock-ups, made of two types of lignocellulosic paper impregnated with three types of linseed oil and subjected to accelaratated ageing in specific conditions of relative humidity and temperature in closed environment. The research involved colorimetry, opacity, tensile strength, pH measurements, SEM, FTIR, and VOC analysis with GC-MS. The results indicated that thermal-humid ageing caused the gradual darkening of the oil-impregnated mock-ups, alterations in opacity, and decrease of pH values, depending mainly on the formulation of linseed oil, as well as a reduction in tensile strength. FTIR analysis results indicated that the chemical changes that occur upon ageing supported the recorded optical and mechanical alterations, while VOC emissions are both associated with the paper type and the kinetics of degradation of the different types of linseed oil

    Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents

    No full text
    Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf phenolic compounds. The resultant extracts were evaluated for their total phenol content (TPC), phenolic profile and antioxidant activity and compared with those of water and ethanol:water 70% v/v extracts. HAE was proven to be the most efficient method for the recovery of olive leaf phenolic compounds. The highest TPC (55.12 ± 1.08 mg GAE/g d.w.) was found in CCA extracts after HAE at 60 °C and 12,000 rpm, and the maximum antioxidant activity (3.32 ± 0.39 g d.w./g DPPH) was found in CGL extracts after UAE at 60 °C for 30 min. The TPCs of ethanol extracts were found to be higher than those of NADES extracts in most cases. The predominant phenolic compounds in the extracts were oleuropein, hydrohytyrosol and rutin

    Addition of Vital Wheat Gluten to Enhance the Quality Characteristics of Frozen Dough Products

    No full text
    The aim of this study was to enhance the quality and sensory characteristics of bread made from frozen dough. Both white and whole-wheat flour were used. In order to improve dough strength and stability during frozen storage, samples were supplemented with vital wheat gluten at the levels of 2%, 4%, 5%, and 6% of flour weight. The characteristics of baked samples were determined through weight loss, specific volume, crust, and crumb color, texture, and sensory evaluation. Dough behavior at sub-zero temperatures was further examined for control samples and samples with 6% gluten using Differential Scanning Calorimetry (DSC), while their low molecular sugar content (fructose, glucose, sucrose) was measured using High Pressure Liquid Chromatography (HPLC), as it can be associated with yeast viability and dough freezing point depression. The most stable samples were those with 4% and 6% gluten (for white flour) and those with 4% and 5% gluten (for whole-wheat flour). Gluten addition raised the freezing point of dough samples and preserved low molecular sugar generation after prolonged storage

    Microencapsulation of steviol glycosides (Stevia rebaudiana Bertoni) by a spray drying method – Evaluation of encapsulated products and prepared syrups

    No full text
    The aim of this study was to encapsulate the steviol glycosides (SGs), derived from Stevia rebaudiana (Bert) Bertoni leaves, by applying a spray-drying method. The purpose was to minimize the bitter aftertaste of the SGs as well as to ameliorate/improve their properties. The encapsulation agents used were maltodextrin (19 DE) and inulin in a ratio of 80 : 20, while three levels of SGs in total solids (1.5, 2.5 and 3.5 %) were studied. The encapsulated SGs products were evaluated for their hygroscopicity, solubility, moisture content and microencapsulation efficiency (MEE %). Also, syrups prepared with encapsulated SGs, at 1 % w/v, were tested for their viscosity, refractive index, turbidity and sensory properties. Significant differences (P&lt;0.05)  in MEE %, moisture content, hygroscopicity and solubility values of the encapsulated SGs products were observed depending on the level of SGs in total solids. In particular, the MEE %, the hygroscopicity and the solubility values ranged from 62.36, 82.46 to 94.67 %, 21.51, 26.67 and 24.25 % and 99.93, 97.50 to 96.03 % for encapsulated SGs products produced with 1.5, 2.5 and 3.5 % SGs in total solids, respectively. The encapsulated product produced with 2.5 % steviol glycosides in total solids presented the most appealing sensory and quality characteristics.</p

    Improved Properties of Composite Edible Films Based on Chitosan by Using Cellulose Nanocrystals and Beta-Cyclodextrin

    No full text
    The aim of this study was to produce innovative edible films and coatings with various combinations of materials, in order to achieve the best possible resulting properties. More specifically, the effect of cellulose nanocrystals (CNC) or beta-cyclodextrin (CD) addition to chitosan (CH) films and the development of composite CH–CNC–CD films were investigated. According to the results, most properties of both CH–CNC and CH–CD edible films were improved. The viscosity of the solutions was decreased up to 50% while the surface tension was minimally changed even at high levels of CNC or CD addition. Furthermore, oxygen and water vapor permeability of the CH–CNC and the CH–CD edible films was decreased, whereas transparency and heterogeneity were increased. On the other hand, the study of the composite CH–CNC–CD films, showed that CNC improved viscosity, supporting thus the coating procedure. Moreover, CNC led to more stable structures with enhanced mechanical properties. Finally, CD mostly contributed to the improvement of the optical properties (lighter color and increased transparency)

    Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions

    No full text
    The present study aimed at synthesizing a novel adsorbing agent by coupling chitosan, β-cyclodextrin, and cerium dioxide (Chit/β-CyD/Ce). Its efficiency towards the removal of hexavalent chromium from aqueous solutions was studied and compared to an adsorbent comprising of only chitosan and cerium dioxide. Batch water purification experiments in varying experimental conditions (initial adsorbent concentration 5–100 mg/L, adsorbate concentration 0.1–2 g/L, pH 2–11, and temperature 15–50 °C) were carried out to evaluate the effectiveness of both adsorbents. In all the experimental cases, the Chit/β-CyD/Ce adsorbent exhibited the higher efficacy. The optimum operating conditions were found to be at an initial adsorbent concentration of 2 g/L, pH = 3, and temperature of 50 °C, with the Chit/β-CyD/Ce adsorbent being able to fully remove Cr(VI) from solutions with up to 50 mg/L Cr(VI) at these conditions. The adsorption of hexavalent chromium onto both adsorbents occurs in a multilayer pattern of a heterogeneous surface following the Freundlich isotherm model. Furthermore, the adsorption process was exothermic and obeyed the pseudo-second-order kinetic model, thus indicating the occurrence of chemisorption. Finally, FTIR, XRD, and SEM analyses were performed to characterize the synthesized adsorbents and verify the adsorption process
    corecore