28 research outputs found

    Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis

    Get PDF
    Introduction Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. Methods An unbiased approach using gene expression profiling of a BLBC progression model and in silicoleveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Results We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. Conclusion Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease

    Differentiation of fetal hematopoietic stem cells requires ARID4B to restrict autocrine KITLG/KIT-Src signaling.

    Get PDF
    Balance between the hematopoietic stem cell (HSC) duality to either possess self-renewal capacity or differentiate into multipotency progenitors (MPPs) is crucial for maintaining homeostasis of the hematopoietic stem/progenitor cell (HSPC) compartment. To retain the HSC self-renewal activity, KIT, a receptor tyrosine kinase, in HSCs is activated by its cognate ligand KITLG originating from niche cells. Here, we show that AT-rich interaction domain 4B (ARID4B) interferes with KITLG/KIT signaling, consequently allowing HSC differentiation. Conditional Arid4b knockout in mouse hematopoietic cells blocks fetal HSC differentiation, preventing hematopoiesis. Mechanistically, ARID4B-deficient HSCs self-express KITLG and overexpress KIT. As to downstream pathways of KITLG/KIT signaling, inhibition of Src family kinases rescues the HSC differentiation defect elicited by ARID4B loss. In summary, the intrinsic ARID4B-KITLG/KIT-Src axis is an HSPC regulatory program that enables the differentiation state, while KIT stimulation by KITLG from niche cells preserves the HSPC undifferentiated pool

    Método híbrido para categorización de texto basado en aprendizaje y reglas

    Get PDF
    En este artículo se presenta un nuevo método híbrido de categorización automática de texto, que combina un algoritmo de aprendizaje computacional, que permite construir un modelo base de clasificación sin mucho esfuerzo a partir de un corpus etiquetado, con un sistema basado en reglas en cascada que se emplea para filtrar y reordenar los resultados de dicho modelo base. El modelo puede afinarse añadiendo reglas específicas para aquellas categorías difíciles que no se han entrenado de forma satisfactoria. Se describe una implementación realizada mediante el algoritmo kNN y un lenguaje básico de reglas basado en listas de términos que aparecen en el texto a clasificar. El sistema se ha evaluado en diferentes escenarios incluyendo el corpus de noticias Reuters-21578 para comparación con otros enfoques, y los modelos IPTC y EUROVOC. Los resultados demuestran que el sistema obtiene una precisión y cobertura comparables con las de los mejores métodos del estado del arte

    Nutrients Suppress Phosphatidylinositol 3-Kinase/Akt Signaling via Raptor-Dependent mTOR-Mediated Insulin Receptor Substrate 1 Phosphorylation

    No full text
    Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85α/p110α PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling

    Lysine-Specific Histone Demethylases in Normal and Malignant Hematopoiesis.

    No full text
    The epigenetic control of gene expression is central to the development of the hematopoietic system and the execution of lineage-specific transcriptional programs. During the last ten years, mounting evidence implicates the family of lysine-specific histone demethylases as critical regulators of normal hematopoiesis, whereas their deregulation is found in a broad spectrum of hematopoietic malignancies. Here, we review recent findings on the role of these enzymes in normal and malignant hematopoiesis to highlight how aberrant epigenetic regulation facilitates hematopoietic cell transformation through subversion of cell fate and lineage commitment programs

    BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice

    No full text
    © 2020, The Author(s). Chronic pancreatitis represents a risk factor for the development of pancreatic cancer. We find that heterozygous loss of histone H2A lysine 119 deubiquitinase BAP1 (BRCA1 Associated Protein-1) associates with a history of chronic pancreatitis and occurs in 25% of pancreatic ductal adenocarcinomas and 40% of acinar cell carcinomas. Deletion or heterozygous loss of Bap1 in murine pancreata causes genomic instability, tissue damage, and pancreatitis with full penetrance. Concomitant expression of KrasG12D leads to predominantly intraductal papillary mucinous neoplasms and mucinous cystic neoplasms, while pancreatic intraepithelial neoplasias are rarely detected. These lesions progress to metastatic pancreatic cancer with high frequency. Lesions with histological features mimicking Acinar Cell Carcinomas are also observed in some tumors. Heterozygous mice also develop pancreatic cancer suggesting a haploinsufficient tumor suppressor role for BAP1. Mechanistically, BAP1 regulates genomic stability, in a catalytic independent manner, and its loss confers sensitivity to irradiation and platinum-based chemotherapy in pancreatic cancer

    Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus

    No full text
    The histone H3 demethylase Not dead yet-1 (Ndy1/KDM2B) is a physiological inhibitor of senescence. Here, we show that Ndy1 is down-regulated during senescence in mouse embryonic fibroblasts (MEFs) and that it represses the Ink4a/Arf locus. Ndy1 counteracts the senescence-associated down-regulation of Ezh2, a component of polycomb-repressive complex (PRC) 2, via a JmjC domain-dependent process leading to the global and Ink4a/Arf locus-specific up-regulation of histone H3K27 trimethylation. The latter promotes the Ink4a/Arf locus-specific binding of Bmi1, a component of PRC1. Ndy1, which interacts with Ezh2, also binds the Ink4a/Arf locus and demethylates the locus-associated histone H3K36me2 and histone H3K4me3. The combination of histone modifications driven by Ndy1 interferes with the binding of RNA Polymerase II, resulting in the transcriptional silencing of the Ink4a/Arf locus and contributing to the Ndy1 immortalization phenotype. Other studies show that, in addition to inhibiting replicative senescence, Ndy1 inhibits Ras oncogene-induced senescence via a similar molecular mechanism
    corecore