11 research outputs found

    Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.

    Full text link
    Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans

    Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance

    Get PDF
    PGC-1beta is a transcriptional coactivator that potently stimulates mitochondrial biogenesis and respiration of cells. Here, we have generated mice lacking exons 3 to 4 of the Pgc-1beta gene (Pgc-1beta(E3,4-/E3,4-) mice). These mice express a mutant protein that has reduced coactivation activity on a subset of transcription factors, including ERRalpha, a major target of PGC-1beta in the induction of mitochondrial gene expression. The mutant mice have reduced expression of OXPHOS genes and mitochondrial dysfunction in liver and skeletal muscle as well as elevated liver triglycerides. Euglycemic-hyperinsulinemic clamp and insulin signaling studies show that PGC-1beta mutant mice have normal skeletal muscle response to insulin but have hepatic insulin resistance. These results demonstrate that PGC-1beta is required for normal expression of OXPHOS genes and mitochondrial function in liver and skeletal muscle. Importantly, these abnormalities do not cause insulin resistance in skeletal muscle but cause substantially reduced insulin action in the liver
    corecore