223 research outputs found
Internal Vertebral Morphology of Bony Fishes Matches the Mechanical Demands of Different Environments
Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro-computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species
Development of a Practical Model for Targeting Patient Decision Support Interventions to Promote Colorectal Cancer Screening in Vulnerable Populations
We sought to develop a practical model for predicting probability of colorectal cancer (CRC) screening completion in a diverse safety-net population and a subsequent framework for targeting screening promotion interventions. Data used to construct the models was prospectively collected from a CRC screening intervention. Models were cross-validated by randomly splitting the data into training and validation samples. The predicted probabilities of screening completion from the final model were trichotomized into framework groups and cross-validated by defining cut-points in the training sample, applying them to the validation sample, and comparing across samples for homogeneity. The final model included demographic and simple psychosocial measures and predicted screening behavior adequately (AUROC=0.63). The framework groups (cut-points 0.62 (low), 0.74 (medium), and 1.0 (high)) were homogeneous across the two samples. The model and framework may be useful for designing and delivering targeted interventions to promote CRC screening. Future research should validate the framework groups
Aerodynamics of the Hovering Hummingbird
Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models, and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar—avian—body plan
Heuristic Optimization Methods for Dynamic Panel Data Model Selection: Application on the Russian Innovative Performance
Innovations, be they radical new products or technology improvements are widely recognized as a key factor of economic growth. To identify the factors triggering innovative activities is a main concern for economic theory and empirical analysis. As the number of hypotheses is large, the process of model selection becomes a crucial part of the empirical implementation. The problem is complicated by the fact that unobserved heterogeneity and possible endogeneity of regressors have to be taken into account. A new efficient solution to this problem is suggested, applying optimization heuristics, which exploits the inherent discrete nature of the problem. The model selection is based on information criteria and the Sargan test of overidentifying restrictions. The method is applied to Russian regional data within the framework of a log-linear dynamic panel data model. To illustrate the performance of the method, we also report the results of Monte-Carlo simulations
A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients
[[abstract]]Background:Human hepatocellular carcinoma (HCC) cells are largely deficient of argininosuccinate synthetase and thus auxotrophic for arginine. This study aims to investigate the efficacy and pharmacodynamics of pegylated arginine deiminase (ADI-PEG 20), a systemic arginine deprivation agent, in Asian HCC patients. Methods:Patients with advanced HCC who were not candidates for local therapy were eligible and randomly assigned to receive weekly intramuscular injections of ADI-PEG 20 at doses of 160 or 320 IU m-2. The primary end point was disease-control rate (DCR). Results:Of the 71 accruals, 43.6% had failed previous systemic treatment. There were no objective responders. The DCR and the median overall survival (OS) of the intent-to-treat population were 31.0% (95% confidence interval (CI): 20.5-43.1) and 7.3 (95% CI: 4.7-9.9) months respectively. Both efficacy parameters were comparable between the two study arms. The median OS of patients with undetectable circulating arginine for more than or equal to and <4 weeks was 10.0 (95% CI: 2.1-17.9) and 5.8 (95% CI: 1.4-10.1) months respectively (P=0.251, log-rank test). The major treatment-related adverse events were grades 1-2 local and/or allergic reactions. Conclusions:ADI-PEG 20 is safe and efficacious in stabilising the progression of heavily pretreated advanced HCC in an Asian population, and deserves further exploration.British Journal of Cancer advance online publication, 31 August 2010; doi:10.1038/sj.bjc.6605856 www.bjcancer.com
Somersault of Paramecium in extremely confined environments
We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces
Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint
Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes
- …