67 research outputs found

    Correlations between pressure and bandwidth effects in metal-insulator transitions in manganites

    Full text link
    The effect of pressure on the metal-insulator transition in manganites with a broad range of bandwidths is investigated. A critical pressure is found at which the metal-insulator transition temperature, TMI_{MI}, reaches a maximum value in every sample studied. The origin of this universal pressure and the relation between the pressure effect and the bandwidth on the metal-insulator transition are discussed

    Pressure Induced Reentrant Electronic and Magnetic State in Pr0.7Ca0.3MnO3 Manganite

    Full text link
    In Pr0.7_{0.7}Ca0.3_{0.3}MnO3_{3}, pressure induces reentrant magnetic and electronic state changes in the range 1 atm to ∟\sim 6 GPa. The metal-insulator and magnetic transition temperatures coincide from ∟\sim1 to 5 GPa, decouple outside of this range and do not change monotonically with pressure. The effects may be explained by pressure tuned competition between double exchange and super exchange. The insulating state induced by pressure above ∟\sim5 GPa is possibly ferromagnetic, different from the ferromagnetic and antiferromagnetic phase-separated insulating state below ∟\sim0.8 GPa

    Pressure effects on charge, spin, and metal-insulator transitions in narrow bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3}

    Full text link
    Pressure effects on the charge and spin states and the relation between the ferromagnetic and metallic states were explored on the small bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3} (x = 0.25, 0.3, 0.35). Under pressure, the charge ordering state is suppressed and a ferromagnetic metallic state is induced in all three samples. The metal-insulator transition temperature (TMI_{MI}) increases with pressure below a critical point P*, above which TMI_{MI} decreases and the material becomes insulating as at the ambient pressure. The eg_{g} electron bandwidth and/or band-filling mediate the pressure effects on the metal-insulator transition and the magnetic transition. In the small bandwidth and low doping concentration compound (x = 0.25), the TMI_{MI} and Curie temperature (TC_{C}) change with pressure in a reverse way and do not couple under pressure. In the x = 0.3 compound, the relation of TMI_{MI} and TC_{C} shows a critical behavior: They are coupled in the range of ∼\sim0.8-5 GPa and decoupled outside of this range. In the x = 0.35 compound, TMI_{MI} and TC_{C} are coupled in the measured pressure range where a ferromagnetic state is present

    Observation of Ferromagnetic Clusters in Bi0.125Ca0.875MnO3

    Full text link
    The electron doped manganite system, Bi0.125Ca0.875MnO3, exhibits large bulk magnetization of unknown origin. To select amongst possible magnetic ordering models, we have conducted temperature and magnetic field dependent small-angle neutron scattering measurements. Nontrivial spin structure has been revealed. Ferromagnetic spin clusters form in the antiferromagnetic background when temperature is decreased to Tc~108K. With a further reduction in temperature or the application of external magnetic field, the clusters begin to form in larger numbers, which gives an overall enhancement of magnetization below Tc.Comment: 14 pages, 6 figue

    Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    Get PDF
    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity

    Observation of Changes in the Atomic and Electronic Structure of Single-Crystal YBa₂Cu₃O₆.₆ Accompanying Bromination

    Get PDF
    To ascertain the role of bromination in the recovery of superconductivity in underdoped YBa2Cu3O6+y (YBCO), we have performed polarized multiple-edge x-ray-absorption fine structure (XAFS) measurements on normal (y~0.6) and brominated (Br/Cu~1/30, y~0.6) single crystals with superconducting transitions at 63 and 89 K, respectively. The brominated sample becomes strongly heterogeneous on an atomic length scale. Approximately one-third of YBCO is locally decomposed yet incorporated as a well-ordered host lattice as nanoscale regions. The decomposed phase consists of heavily distorted domains with an order not following that of the host lattice. Structurally, these domains are fragments of the YBCO lattice that are discontinued along the Cu(1)-O(1) containing planes. The local structure is consistent with the cluster expansions: Y-O(2,3)8-Cu(2)8-..., Ba-O8-Cu(2)4Cu(1)2-..., and Cu-O4... about the Y, Ba, and Cu sites. Interatomic distances and Debye-Waller factors for the expansions were determined from fits to Y K-, Ba L3-, and Cu K-edge XAFS data at room temperature. Br K-edge data reveal that Br does not enter substitutionally or interstitially into the perfect YBCO lattice. However, Br does occupy the Cu(1) sites in a nanofragment of the YBCO lattice, forming Br-O(4)-Ba-Cu2(1)Cu(2)-... nanoclusters. From polarized measurements these nanoclusters were found to be almost randomly oriented with respect to the host crystal, and probably are the nucleus of the decomposed phase. This heterogeneity brings about the unusual structural and electronic properties of the normal state previously reported in the literature. Implications on for diffraction, transport, and magnetization measurements are discussed
    • …
    corecore