2 research outputs found

    Duplication of (12)(pter-q13.3) combined with deletion of (22)(pter-q11.2) in a patient with features of both chromosome aberrations

    Full text link
    We report a patient with multiple dysmorphic signs and congenital malformations, representing a combination of clinical features of duplication (12p) and deletion (22)(q11.2) syndromes. The girl had overgrowth at birth, showed abnormal cranio-facial findings, cleft uvula, a complex conotruncal heart defect, a polycystic right kidney, and an umbilical hernia. She died at the age of 6 months of cardio-respiratory failure. Cytogenetic examination demonstrated a derivative chromosome 12 replacing one of the two chromosomes 22. The paternal karyotype was normal 46,XY while the mother's karyotype was 46,XX,rcp(12;22)(q13.2;q11.2). According to the published data, all patients with deletion 22q11.2 combined with other unbalanced chromosomal aberration have a more severe clinical expression than those with interstitial deletions

    Chromosomal map of human brain malformations

    Full text link
    The etiology of most central nervous system (CNS) malformations remains unknown. We have utilized the fact that autosomal chromosome aberrations are commonly associated with CNS malformations to identify new causative gene loci. The human cytogenetic database, a computerized catalog of the clinical phenotypes associated with cytogenetically detectable human chromosome aberrations, was used to identify patients with 14 selected brain malformations including 541 with deletions, and 290 carrying duplications. These cases were used to develop an autosomal deletion and duplication map consisting of 67 different deleted malformation associated bands (MABs) in 55 regions and 88 different duplicated MABs in 36 regions; 31 of the deleted and 8 duplicated MABs were highly significantly associated (P < 0.001). All holoprosencephaly MABs found in the database contained a known HPE gene providing some level of validation for the approach. Significantly associated MABs are discussed for each malformation together with the published data about known disease-causing genes and reported malformation-associated loci, as well as the limitations of the proposed approach
    corecore