21 research outputs found
Recommended from our members
Image set for deep learning: field images of maize annotated with disease symptoms
Objectives
Automated detection and quantification of plant diseases would enable more rapid gains in plant breeding and faster scouting of farmers’ fields. However, it is difficult for a simple algorithm to distinguish between the target disease and other sources of dead plant tissue in a typical field, especially given the many variations in lighting and orientation. Training a machine learning algorithm to accurately detect a given disease from images taken in the field requires a massive amount of human-generated training data.
Data description
This data set contains images of maize (Zea mays L.) leaves taken in three ways: by a hand-held camera, with a camera mounted on a boom, and with a camera mounted on a small unmanned aircraft system (sUAS, commonly known as a drone). Lesions of northern leaf blight (NLB), a common foliar disease of maize, were annotated in each image by one of two human experts. The three data sets together contain 18,222 images annotated with 105,705 NLB lesions, making this the largest publicly available image set annotated for a single plant disease
Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning
Plant disease poses a serious threat to global food security. Accurate, high-throughput methods of quantifying disease are needed by breeders to better develop resistant plant varieties and by researchers to better understand the mechanisms of plant resistance and pathogen virulence. Northern leaf blight (NLB) is a serious disease affecting maize and is responsible for significant yield losses. A Mask R-CNN model was trained to segment NLB disease lesions in unmanned aerial vehicle (UAV) images. The trained model was able to accurately detect and segment individual lesions in a hold-out test set. The mean intersect over union (IOU) between the ground truth and predicted lesions was 0.73, with an average precision of 0.96 at an IOU threshold of 0.50. Over a range of IOU thresholds (0.50 to 0.95), the average precision was 0.61. This work demonstrates the potential for combining UAV technology with a deep learning-based approach for instance segmentation to provide accurate, high-throughput quantitative measures of plant disease